New curvature characterizations for spherical space forms and complex projective spaces
HTML articles powered by AMS MathViewer
- by Xiaokui Yang and Liangdi Zhang;
- Trans. Amer. Math. Soc. 378 (2025), 679-694
- DOI: https://doi.org/10.1090/tran/9278
- Published electronically: October 23, 2024
- HTML | PDF | Request permission
Abstract:
In this paper, we introduce a new positivity notion for curvature of Riemannian manifolds and obtain characterizations for spherical space forms and the complex projective space $\mathbb {C}\mathbb {P}^n$.References
- D. Alekseevsky, Isabel Dotti, and C. Ferraris, Homogeneous Ricci positive $5$-manifolds, Pacific J. Math. 175 (1996), no. 1, 1–12. MR 1419469, DOI 10.2140/pjm.1996.175.1
- S. Bochner, Vector fields and Ricci curvature, Bull. Amer. Math. Soc. 52 (1946), 776–797. MR 18022, DOI 10.1090/S0002-9904-1946-08647-4
- Christoph Böhm and Burkhard Wilking, Manifolds with positive curvature operators are space forms, Ann. of Math. (2) 167 (2008), no. 3, 1079–1097. MR 2415394, DOI 10.4007/annals.2008.167.1079
- Simon Brendle, Einstein manifolds with nonnegative isotropic curvature are locally symmetric, Duke Math. J. 151 (2010), no. 1, 1–21. MR 2573825, DOI 10.1215/00127094-2009-061
- Simon Brendle, Ricci flow with surgery on manifolds with positive isotropic curvature, Ann. of Math. (2) 190 (2019), no. 2, 465–559. MR 3997128, DOI 10.4007/annals.2019.190.2.2
- Simon Brendle and Richard Schoen, Manifolds with $1/4$-pinched curvature are space forms, J. Amer. Math. Soc. 22 (2009), no. 1, 287–307. MR 2449060, DOI 10.1090/S0894-0347-08-00613-9
- Bing-Long Chen, Siu-Hung Tang, and Xi-Ping Zhu, Complete classification of compact four-manifolds with positive isotropic curvature, J. Differential Geom. 91 (2012), no. 1, 41–80. MR 2944961
- Bing-Long Chen and Xi-Ping Zhu, Ricci flow with surgery on four-manifolds with positive isotropic curvature, J. Differential Geom. 74 (2006), no. 2, 177–264. MR 2258799
- Haiwen Chen, Pointwise $\frac 14$-pinched $4$-manifolds, Ann. Global Anal. Geom. 9 (1991), no. 2, 161–176. MR 1136125, DOI 10.1007/BF00776854
- X. X. Chen, On Kähler manifolds with positive orthogonal bisectional curvature, Adv. Math. 215 (2007), no. 2, 427–445. MR 2355611, DOI 10.1016/j.aim.2006.11.006
- Bennett Chow, Peng Lu, and Lei Ni, Hamilton’s Ricci flow, Graduate Studies in Mathematics, vol. 77, American Mathematical Society, Providence, RI; Science Press Beijing, New York, 2006. MR 2274812, DOI 10.1090/gsm/077
- Bennett Chow and Deane Yang, Rigidity of nonnegatively curved compact quaternionic-Kähler manifolds, J. Differential Geom. 29 (1989), no. 2, 361–372. MR 982180
- Xiaodong Cao, Matthew J. Gursky, and Hung Tran, Curvature of the second kind and a conjecture of Nishikawa, Comment. Math. Helv. 98 (2023), no. 1, 195–216. MR 4592855, DOI 10.4171/cmh/545
- Xiaodong Cao and Hung Tran, Einstein four-manifolds of pinched sectional curvature, Adv. Math. 335 (2018), 322–342. MR 3836668, DOI 10.1016/j.aim.2018.07.003
- Huitao Feng, Kefeng Liu, and Xueyuan Wan, Compact Kähler manifolds with positive orthogonal bisectional curvature, Math. Res. Lett. 24 (2017), no. 3, 767–780. MR 3696602, DOI 10.4310/MRL.2017.v24.n3.a7
- S. Gallot and D. Meyer, Opérateur de courbure et laplacien des formes différentielles d’une variété riemannienne, J. Math. Pures Appl. (9) 54 (1975), no. 3, 259–284 (French). MR 454884
- Hui-Ling Gu, A new proof of Mok’s generalized Frankel conjecture theorem, Proc. Amer. Math. Soc. 137 (2009), no. 3, 1063–1068. MR 2457447, DOI 10.1090/S0002-9939-08-09611-1
- HuiLing Gu and ZhuHong Zhang, An extension of Mok’s theorem on the generalized Frankel conjecture, Sci. China Math. 53 (2010), no. 5, 1253–1264. MR 2653275, DOI 10.1007/s11425-010-0013-y
- Pengfei Guan, Chang-Shou Lin, and Guofang Wang, Application of the method of moving planes to conformally invariant equations, Math. Z. 247 (2004), no. 1, 1–19. MR 2054518, DOI 10.1007/s00209-003-0608-x
- Pengfei Guan, Chang-Shou Lin, and Guofang Wang, Schouten tensor and some topological properties, Comm. Anal. Geom. 13 (2005), no. 5, 887–902. MR 2216144, DOI 10.4310/cag.2005.v13.n5.a2
- Pengfei Guan, Jeff Viaclovsky, and Guofang Wang, Some properties of the Schouten tensor and applications to conformal geometry, Trans. Amer. Math. Soc. 355 (2003), no. 3, 925–933. MR 1938739, DOI 10.1090/S0002-9947-02-03132-X
- Pengfei Guan and Guofang Wang, Geometric inequalities on locally conformally flat manifolds, Duke Math. J. 124 (2004), no. 1, 177–212. MR 2072215, DOI 10.1215/S0012-7094-04-12416-9
- Matthew J. Gursky, Locally conformally flat four- and six-manifolds of positive scalar curvature and positive Euler characteristic, Indiana Univ. Math. J. 43 (1994), no. 3, 747–774. MR 1305946, DOI 10.1512/iumj.1994.43.43033
- Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255–306. MR 664497
- Richard S. Hamilton, Four-manifolds with positive curvature operator, J. Differential Geom. 24 (1986), no. 2, 153–179. MR 862046
- Richard S. Hamilton, Four-manifolds with positive isotropic curvature, Comm. Anal. Geom. 5 (1997), no. 1, 1–92. MR 1456308, DOI 10.4310/CAG.1997.v5.n1.a1
- Hong Huang, Classification of compact manifolds with positive isotropic curvature, arXiv:2305.18154v5.
- Xiaolong Li, Kähler manifolds and the curvature operator of the second kind, Math. Z. 303 (2023), no. 4, Paper No. 101, 26. MR 4564573, DOI 10.1007/s00209-023-03263-0
- Daniel Meyer, Sur les variétés riemanniennes à opérateur de courbure positif, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A482–A485 (French). MR 279736
- Mario J. Micallef and John Douglas Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. (2) 127 (1988), no. 1, 199–227. MR 924677, DOI 10.2307/1971420
- Mario J. Micallef and McKenzie Y. Wang, Metrics with nonnegative isotropic curvature, Duke Math. J. 72 (1993), no. 3, 649–672. MR 1253619, DOI 10.1215/S0012-7094-93-07224-9
- Ngaiming Mok, The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature, J. Differential Geom. 27 (1988), no. 2, 179–214. MR 925119
- Shigefumi Mori, Projective manifolds with ample tangent bundles, Ann. of Math. (2) 110 (1979), no. 3, 593–606. MR 554387, DOI 10.2307/1971241
- Lei Ni and Baoqiang Wu, Complete manifolds with nonnegative curvature operator, Proc. Amer. Math. Soc. 135 (2007), no. 9, 3021–3028. MR 2511306, DOI 10.1090/S0002-9939-06-08872-1
- Lei Ni and Fangyang Zheng, Comparison and vanishing theorems for Kähler manifolds, Calc. Var. Partial Differential Equations 57 (2018), no. 6, Paper No. 151, 31. MR 3858834, DOI 10.1007/s00526-018-1431-x
- Lei Ni and Fangyang Zheng, Positivity and the Kodaira embedding theorem, Geom. Topol. 26 (2022), no. 6, 2491–2505. MR 4521247, DOI 10.2140/gt.2022.26.2491
- Peter Petersen and Matthias Wink, New curvature conditions for the Bochner technique, Invent. Math. 224 (2021), no. 1, 33–54. MR 4228500, DOI 10.1007/s00222-020-01003-3
- Peter Petersen and Matthias Wink, Vanishing and estimation results for Hodge numbers, J. Reine Angew. Math. 780 (2021), 197–219. MR 4333978, DOI 10.1515/crelle-2021-0036
- Yum Tong Siu and Shing Tung Yau, Compact Kähler manifolds of positive bisectional curvature, Invent. Math. 59 (1980), no. 2, 189–204. MR 577360, DOI 10.1007/BF01390043
- Shun-ichi Tachibana, A theorem on Riemannian manifolds of positive curvature operator, Proc. Japan Acad. 50 (1974), 301–302. MR 365415
- Mariko Tani, On a conformally flat Riemannian space with positive Ricci curvature, Tohoku Math. J. (2) 19 (1967), 227–231. MR 220213, DOI 10.2748/tmj/1178243319
- G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), no. 1, 101–172. MR 1055713, DOI 10.1007/BF01231499
- Valentino Tosatti, Kähler-Einstein metrics on Fano surfaces, Expo. Math. 30 (2012), no. 1, 11–31. MR 2899654, DOI 10.1016/j.exmath.2011.07.003
- Burkhard Wilking, A Lie algebraic approach to Ricci flow invariant curvature conditions and Harnack inequalities, J. Reine Angew. Math. 679 (2013), 223–247. MR 3065160, DOI 10.1515/crelle.2012.018
- Peng Wu, Einstein four-manifolds of three-nonnegative curvature operator, Math. Z. 293 (2019), no. 3-4, 1489–1511. MR 4024595, DOI 10.1007/s00209-019-02296-8
- Xiaokui Yang, RC-positivity, rational connectedness and Yau’s conjecture, Camb. J. Math. 6 (2018), no. 2, 183–212. MR 3811235, DOI 10.4310/CJM.2018.v6.n2.a2
- Shing Tung Yau, Problem section, Seminar on Differential Geometry, Ann. of Math. Stud., No. 102, Princeton Univ. Press, Princeton, NJ, 1982, pp. 669–706. MR 645762
Bibliographic Information
- Xiaokui Yang
- Affiliation: Department of Mathematics and Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, People’s Republic of China
- Email: xkyang@tsinghua.edu.cn
- Liangdi Zhang
- Affiliation: Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, People’s Republic of China
- MR Author ID: 1187916
- Email: zld@bimsa.cn
- Received by editor(s): December 25, 2023
- Received by editor(s) in revised form: June 26, 2024
- Published electronically: October 23, 2024
- Additional Notes: The first author was partially supported by National Key R&D Program of China 2022YFA1005400 and NSFC grants (No. 12325103, No. 12171262 and No. 12141101).
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 679-694
- MSC (2020): Primary 53C24, 53C55; Secondary 53E20, 53E30
- DOI: https://doi.org/10.1090/tran/9278
- MathSciNet review: 4840319