Discontinuous eikonal equations in metric measure spaces
HTML articles powered by AMS MathViewer
- by Qing Liu, Nageswari Shanmugalingam and Xiaodan Zhou;
- Trans. Amer. Math. Soc. 378 (2025), 695-729
- DOI: https://doi.org/10.1090/tran/9294
- Published electronically: September 25, 2024
- HTML | PDF | Request permission
Abstract:
In this paper, we study the eikonal equation in metric measure spaces, where the inhomogeneous term is allowed to be discontinuous, unbounded and merely $p$-integrable in the domain with a finite $p$. For continuous eikonal equations, it is known that the notion of Monge solutions is equivalent to the standard definition of viscosity solutions. Generalizing the notion of Monge solutions in our setting, we establish uniqueness and existence results for the associated Dirichlet boundary problem. The key in our approach is to adopt a new metric, based on the optimal control interpretation, which integrates the discontinuous term and converts the eikonal equation to a standard continuous form. We also discuss the Hölder continuity of the unique solution with respect to the original metric under regularity assumptions on the space and the inhomogeneous term.References
- Yves Achdou, Fabio Camilli, Alessandra Cutrì, and Nicoletta Tchou, Hamilton-Jacobi equations constrained on networks, NoDEA Nonlinear Differential Equations Appl. 20 (2013), no. 3, 413–445. MR 3057137, DOI 10.1007/s00030-012-0158-1
- Paolo Albano, On the eikonal equation for degenerate elliptic operators, Proc. Amer. Math. Soc. 140 (2012), no. 5, 1739–1747. MR 2869158, DOI 10.1090/S0002-9939-2011-11132-8
- Paolo Albano, Piermarco Cannarsa, and Teresa Scarinci, Regularity results for the minimum time function with Hörmander vector fields, J. Differential Equations 264 (2018), no. 5, 3312–3335. MR 3741391, DOI 10.1016/j.jde.2017.11.016
- Luigi Ambrosio and Jin Feng, On a class of first order Hamilton-Jacobi equations in metric spaces, J. Differential Equations 256 (2014), no. 7, 2194–2245. MR 3160441, DOI 10.1016/j.jde.2013.12.018
- Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Heat flow and calculus on metric measure spaces with Ricci curvature bounded below—the compact case, Analysis and numerics of partial differential equations, Springer INdAM Ser., vol. 4, Springer, Milan, 2013, pp. 63–115. MR 3051398, DOI 10.1007/978-88-470-2592-9_{8}
- Martino Bardi and Italo Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1997. With appendices by Maurizio Falcone and Pierpaolo Soravia. MR 1484411, DOI 10.1007/978-0-8176-4755-1
- Thomas Bieske, The Carnot-Carathéodory distance vis-à-vis the eikonal equation and the infinite Laplacian, Bull. Lond. Math. Soc. 42 (2010), no. 3, 395–404. MR 2651933, DOI 10.1112/blms/bdp131
- Ariela Briani and Andrea Davini, Monge solutions for discontinuous Hamiltonians, ESAIM Control Optim. Calc. Var. 11 (2005), no. 2, 229–251. MR 2141888, DOI 10.1051/cocv:2005004
- D. Yu. Burago, Periodic metrics, Representation theory and dynamical systems, Adv. Soviet Math., vol. 9, Amer. Math. Soc., Providence, RI, 1992, pp. 205–210. MR 1166203
- L. Caffarelli, M. G. Crandall, M. Kocan, and A. Swięch, On viscosity solutions of fully nonlinear equations with measurable ingredients, Comm. Pure Appl. Math. 49 (1996), no. 4, 365–397. MR 1376656, DOI 10.1002/(sici)1097-0312(199604)49:4<365::aid-cpa3>3.0.co;2-a
- Fabio Camilli, An Hopf-Lax formula for a class of measurable Hamilton-Jacobi equations, Nonlinear Anal. 57 (2004), no. 2, 265–286. MR 2056431, DOI 10.1016/j.na.2004.02.013
- Fabio Camilli and Antonio Siconolfi, Hamilton-Jacobi equations with measurable dependence on the state variable, Adv. Differential Equations 8 (2003), no. 6, 733–768. MR 1969652
- Fabio Camilli and Antonio Siconolfi, Time-dependent measurable Hamilton-Jacobi equations, Comm. Partial Differential Equations 30 (2005), no. 4-6, 813–847. MR 2153516, DOI 10.1081/PDE-200059292
- P. Cardaliaguet, Notes on mean field games (from P.-L. Lions’ lectures at collége de france), https://www.ceremade.dauphine.fr/~cardaliaguet/MFG20130420.pdf, 2013.
- J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), no. 3, 428–517. MR 1708448, DOI 10.1007/s000390050094
- Q. Chen, S. A. R. Horsley, N. J. G. Fonseca, T. Tyc, and O. Quevedo-Teruel, Double-layer geodesic and gradient-index lenses, Nat. Commun. 13 (2022), no. 1, 2354.
- Xinfu Chen and Bei Hu, Viscosity solutions of discontinuous Hamilton-Jacobi equations, Interfaces Free Bound. 10 (2008), no. 3, 339–359. MR 2453135, DOI 10.4171/IFB/192
- M. G. Crandall, M. Kocan, P. L. Lions, and A. Święch, Existence results for boundary problems for uniformly elliptic and parabolic fully nonlinear equations, Electron. J. Differential Equations (1999), No. 24, 22 pp.}, review= MR 1696765,
- Klaus Deckelnick and Charles M. Elliott, Uniqueness and error analysis for Hamilton-Jacobi equations with discontinuities, Interfaces Free Bound. 6 (2004), no. 3, 329–349. MR 2095336, DOI 10.4171/IFB/103
- E. Durand-Cartagena and J. A. Jaramillo, Pointwise Lipschitz functions on metric spaces, J. Math. Anal. Appl. 363 (2010), no. 2, 525–548. MR 2564873, DOI 10.1016/j.jmaa.2009.09.039
- Estibalitz Durand-Cartagena, Jesus A. Jaramillo, and Nageswari Shanmugalingam, Geometric characterizations of $p$-Poincaré inequalities in the metric setting, Publ. Mat. 60 (2016), no. 1, 81–111. MR 3447735
- Estibalitz Durand-Cartagena, Jesús A. Jaramillo, and Nageswari Shanmugalingam, Existence and uniqueness of $\infty$-harmonic functions under assumption of $\infty$-Poincaré inequality, Math. Ann. 374 (2019), no. 1-2, 881–906. MR 3961328, DOI 10.1007/s00208-018-1747-z
- I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353. MR 346619, DOI 10.1016/0022-247X(74)90025-0
- Ivar Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 3, 443–474. MR 526967, DOI 10.1090/S0273-0979-1979-14595-6
- Fares Essebei, Gianmarco Giovannardi, and Simone Verzellesi, Monge solutions for discontinuous Hamilton-Jacobi equations in Carnot groups, NoDEA Nonlinear Differential Equations Appl. 31 (2024), no. 5, Paper No. 95, 34. MR 4780624, DOI 10.1007/s00030-024-00983-y
- Wilfrid Gangbo and Andrzej Święch, Metric viscosity solutions of Hamilton-Jacobi equations depending on local slopes, Calc. Var. Partial Differential Equations 54 (2015), no. 1, 1183–1218. MR 3385197, DOI 10.1007/s00526-015-0822-5
- Yoshikazu Giga, Przemysław Górka, and Piotr Rybka, A comparison principle for Hamilton-Jacobi equations with discontinuous Hamiltonians, Proc. Amer. Math. Soc. 139 (2011), no. 5, 1777–1785. MR 2763765, DOI 10.1090/S0002-9939-2010-10630-5
- Yoshikazu Giga and Nao Hamamuki, Hamilton-Jacobi equations with discontinuous source terms, Comm. Partial Differential Equations 38 (2013), no. 2, 199–243. MR 3009078, DOI 10.1080/03605302.2012.739671
- Yoshikazu Giga, Nao Hamamuki, and Atsushi Nakayasu, Eikonal equations in metric spaces, Trans. Amer. Math. Soc. 367 (2015), no. 1, 49–66. MR 3271253, DOI 10.1090/S0002-9947-2014-05893-5
- Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, and Jeremy T. Tyson, Sobolev spaces on metric measure spaces, New Mathematical Monographs, vol. 27, Cambridge University Press, Cambridge, 2015. An approach based on upper gradients. MR 3363168, DOI 10.1017/CBO9781316135914
- Jiahui Hong, Wei Cheng, Shengqing Hu, and Kai Zhao, Representation formulas for contact type Hamilton-Jacobi equations, J. Dynam. Differential Equations 34 (2022), no. 3, 2315–2327. MR 4482254, DOI 10.1007/s10884-021-09960-w
- R. A. Houstoun, Note on Einstein’s theory of gravitation, Philos. Mag. (7) 33 (1942), 899–903. MR 7309
- Cyril Imbert and Régis Monneau, Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks, Ann. Sci. Éc. Norm. Supér. (4) 50 (2017), no. 2, 357–448 (English, with English and French summaries). MR 3621434, DOI 10.24033/asens.2323
- Cyril Imbert and Régis Monneau, Quasi-convex Hamilton-Jacobi equations posed on junctions: the multi-dimensional case, Discrete Contin. Dyn. Syst. 37 (2017), no. 12, 6405–6435. MR 3690310, DOI 10.3934/dcds.2017278
- Cyril Imbert, Régis Monneau, and Hasnaa Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows, ESAIM Control Optim. Calc. Var. 19 (2013), no. 1, 129–166. MR 3023064, DOI 10.1051/cocv/2012002
- Hitoshi Ishii, Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets, Bull. Fac. Sci. Engrg. Chuo Univ. 28 (1985), 33–77. MR 845397
- Hitoshi Ishii, A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 16 (1989), no. 1, 105–135. MR 1056130
- Hitoshi Ishii and Hiroyoshi Mitake, Representation formulas for solutions of Hamilton-Jacobi equations with convex Hamiltonians, Indiana Univ. Math. J. 56 (2007), no. 5, 2159–2183. MR 2360607, DOI 10.1512/iumj.2007.56.3048
- Esa Järvenpää, Maarit Järvenpää, Kevin Rogovin, Sari Rogovin, and Nageswari Shanmugalingam, Measurability of equivalence classes and $\textrm {MEC}_p$-property in metric spaces, Rev. Mat. Iberoam. 23 (2007), no. 3, 811–830. MR 2414493, DOI 10.4171/RMI/514
- Pierre-Louis Lions, Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics, vol. 69, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 667669
- Qing Liu and Ayato Mitsuishi, Principal eigenvalue problem for infinity Laplacian in metric spaces, Adv. Nonlinear Stud. 22 (2022), no. 1, 548–573. MR 4500079, DOI 10.1515/ans-2022-0028
- Qing Liu and Atsushi Nakayasu, Convexity preserving properties for Hamilton-Jacobi equations in geodesic spaces, Discrete Contin. Dyn. Syst. 39 (2019), no. 1, 157–183. MR 3918169, DOI 10.3934/dcds.2019007
- Qing Liu, Nageswari Shanmugalingam, and Xiaodan Zhou, Equivalence of solutions of eikonal equation in metric spaces, J. Differential Equations 272 (2021), 979–1014. MR 4166072, DOI 10.1016/j.jde.2020.10.018
- Q. Liu and X. Zhou, Hamilton-Jacobi equations in metric spaces, Lecture notes for minicourse at OIST summer graduate school “Analysis and Partial Differential Equations”, arXiv:2308.08073.
- S. Makida, Stability of viscosity solutions on expanding networks, Preprint, 2023.
- Atsushi Nakayasu, Metric viscosity solutions for Hamilton-Jacobi equations of evolution type, Adv. Math. Sci. Appl. 24 (2014), no. 2, 333–351. MR 3362772
- Atsushi Nakayasu and Tokinaga Namba, Stability properties and large time behavior of viscosity solutions of Hamilton-Jacobi equations on metric spaces, Nonlinearity 31 (2018), no. 11, 5147–5161. MR 3867230, DOI 10.1088/1361-6544/aadc02
- Richard T. Newcomb II and Jianzhong Su, Eikonal equations with discontinuities, Differential Integral Equations 8 (1995), no. 8, 1947–1960. MR 1348959
- Daniel N. Ostrov, Extending viscosity solutions to eikonal equations with discontinuous spatial dependence, Nonlinear Anal. 42 (2000), no. 4, Ser. A: Theory Methods, 709–736. MR 1776300, DOI 10.1016/S0362-546X(99)00164-9
- Dirk Schieborn and Fabio Camilli, Viscosity solutions of Eikonal equations on topological networks, Calc. Var. Partial Differential Equations 46 (2013), no. 3-4, 671–686. MR 3018167, DOI 10.1007/s00526-012-0498-z
- Bernard D. Seckler and Joseph B. Keller, Geometrical theory of diffraction in inhomogeneous media, J. Acoust. Soc. Amer. 31 (1959), 192–205. MR 100493, DOI 10.1121/1.1907692
- Halil Mete Soner, Optimal control with state-space constraint. I, SIAM J. Control Optim. 24 (1986), no. 3, 552–561. MR 838056, DOI 10.1137/0324032
- Halil Mete Soner, Optimal control with state-space constraint. II, SIAM J. Control Optim. 24 (1986), no. 6, 1110–1122. MR 861089, DOI 10.1137/0324067
- Pierpaolo Soravia, Boundary value problems for Hamilton-Jacobi equations with discontinuous Lagrangian, Indiana Univ. Math. J. 51 (2002), no. 2, 451–477. MR 1909297, DOI 10.1512/iumj.2002.51.2105
- Pierpaolo Soravia, Degenerate eikonal equations with discontinuous refraction index, ESAIM Control Optim. Calc. Var. 12 (2006), no. 2, 216–230. MR 2209351, DOI 10.1051/cocv:2005033
- Agnès Tourin, A comparison theorem for a piecewise Lipschitz continuous Hamiltonian and application to shape-from-shading problems, Numer. Math. 62 (1992), no. 1, 75–85. MR 1159046, DOI 10.1007/BF01396221
- H. V. Tran and Y. Yu, Optimal convergence rate for periodic homogenization of convex Hamilton-Jacobi equations, Indiana Univ. Math. J., to appear.
- Cédric Villani, Optimal transport, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, 2009. Old and new. MR 2459454, DOI 10.1007/978-3-540-71050-9
Bibliographic Information
- Qing Liu
- Affiliation: Geometric Partial Differential Equations Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1, Tancha Onna-son, Okinawa 904-0495, Japan
- MR Author ID: 863178
- Email: qing.liu@oist.jp
- Nageswari Shanmugalingam
- Affiliation: Department of Mathematical Sciences, University of Cincinnati, P.O.Box 210025, Cincinnati, Ohio 45221-0025
- MR Author ID: 666716
- ORCID: 0000-0002-2891-5064
- Email: shanmun@ucmail.uc.edu
- Xiaodan Zhou
- Affiliation: Analysis on Metric Spaces Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
- MR Author ID: 1150978
- Email: xiaodan.zhou@oist.jp
- Received by editor(s): September 2, 2023
- Received by editor(s) in revised form: July 2, 2024
- Published electronically: September 25, 2024
- Additional Notes: The work of the first author was supported by JSPS Grant-in-Aid for Scientific Research (No. 19K03574, No. 22K03396). The work of the second author was partially supported by the grant DMS-#2054960 of the National Science Foundation (U.S.A.). The work of the third author was supported by JSPS Grant-in-Aid for Research Activity Start-up (No. 20K22315) and JSPS Grant-in-Aid for Early-Career Scientists (No. 22K13947).
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 695-729
- MSC (2020): Primary 35F30, 30L99, 49L25, 35R15, 35D40
- DOI: https://doi.org/10.1090/tran/9294
- MathSciNet review: 4840320