A nonlinear variant of Ball’s Inequality
HTML articles powered by AMS MathViewer
- by Jennifer Duncan;
- Trans. Amer. Math. Soc. 378 (2025), 911-941
- DOI: https://doi.org/10.1090/tran/9127
- Published electronically: December 4, 2024
- HTML | PDF
Abstract:
We adapt an induction-on-scales argument of Bennett, Bez, Buschenhenke, Cowling, and Flock [Duke Math J. 169 (2020), pp. 3291–3338] to establish a global near-monotonicity statement for the nonlinear Brascamp–Lieb functional under a certain heat-flow, from which follows a global stability result for nonlinear Brascamp–Lieb inequalities under bounded perturbations.References
- Franck Barthe, On a reverse form of the Brascamp-Lieb inequality, Invent. Math. 134 (1998), no. 2, 335–361. MR 1650312, DOI 10.1007/s002220050267
- F. Barthe, Optimal Young’s inequality and its converse: a simple proof, Geom. Funct. Anal. 8 (1998), no. 2, 234–242. MR 1616143, DOI 10.1007/s000390050054
- Ioan Bejenaru and Sebastian Herr, Convolutions of singular measures and applications to the Zakharov system, J. Funct. Anal. 261 (2011), no. 2, 478–506. MR 2793120, DOI 10.1016/j.jfa.2011.03.015
- Ioan Bejenaru, Sebastian Herr, and Daniel Tataru, A convolution estimate for two-dimensional hypersurfaces, Rev. Mat. Iberoam. 26 (2010), no. 2, 707–728. MR 2677013, DOI 10.4171/RMI/615
- Jonathan Bennett and Neal Bez, Some nonlinear Brascamp-Lieb inequalities and applications to harmonic analysis, J. Funct. Anal. 259 (2010), no. 10, 2520–2556. MR 2679017, DOI 10.1016/j.jfa.2010.07.015
- Jonathan Bennett and Neal Bez, Generating monotone quantities for the heat equation, J. Reine Angew. Math. 756 (2019), 37–63. MR 4026448, DOI 10.1515/crelle-2017-0025
- Jonathan Bennett, Neal Bez, Stefan Buschenhenke, Michael G. Cowling, and Taryn C. Flock, On the nonlinear Brascamp-Lieb inequality, Duke Math. J. 169 (2020), no. 17, 3291–3338. MR 4173156, DOI 10.1215/00127094-2020-0027
- Jonathan Bennett, Neal Bez, Michael G. Cowling, and Taryn C. Flock, Behaviour of the Brascamp-Lieb constant, Bull. Lond. Math. Soc. 49 (2017), no. 3, 512–518. MR 3723636, DOI 10.1112/blms.12049
- Jonathan Bennett, Neal Bez, Taryn C. Flock, and Sanghyuk Lee, Stability of the Brascamp-Lieb constant and applications, Amer. J. Math. 140 (2018), no. 2, 543–569. MR 3783217, DOI 10.1353/ajm.2018.0013
- Jonathan Bennett, Neal Bez, and Susana Gutiérrez, Global nonlinear Brascamp-Lieb inequalities, J. Geom. Anal. 23 (2013), no. 4, 1806–1817. MR 3107679, DOI 10.1007/s12220-012-9307-3
- Jonathan Bennett, Anthony Carbery, Michael Christ, and Terence Tao, The Brascamp-Lieb inequalities: finiteness, structure and extremals, Geom. Funct. Anal. 17 (2008), no. 5, 1343–1415. MR 2377493, DOI 10.1007/s00039-007-0619-6
- Jonathan Bennett, Anthony Carbery, and Terence Tao, On the multilinear restriction and Kakeya conjectures, Acta Math. 196 (2006), no. 2, 261–302. MR 2275834, DOI 10.1007/s11511-006-0006-4
- Jonathan Bennett, Anthony Carbery, Michael Christ, and Terence Tao, Finite bounds for Hölder-Brascamp-Lieb multilinear inequalities, Math. Res. Lett. 17 (2010), no. 4, 647–666. MR 2661170, DOI 10.4310/MRL.2010.v17.n4.a6
- Jonathan Bennett, Anthony Carbery, and James Wright, A non-linear generalisation of the Loomis-Whitney inequality and applications, Math. Res. Lett. 12 (2005), no. 4, 443–457. MR 2155223, DOI 10.4310/MRL.2005.v12.n4.a1
- Thomas F. Bloom, Quantitative inverse theory of Gowers uniformity norms, Astérisque 430, Séminaire Bourbaki. Vol. 2019/2021. Exposés 1166–1180 (2021), Exp. No. 1174, 237–273. MR 4439193
- Jean Bourgain, Ciprian Demeter, and Larry Guth, Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three, Ann. of Math. (2) 184 (2016), no. 2, 633–682. MR 3548534, DOI 10.4007/annals.2016.184.2.7
- Roberto Bramati, Brascamp-Lieb inequalities on compact homogeneous spaces, Anal. Geom. Metr. Spaces 7 (2019), no. 1, 130–157. MR 4015194, DOI 10.1515/agms-2019-0007
- Anthony Carbery, Timo S. Hänninen, and Stefán Ingi Valdimarsson, Multilinear duality and factorisation for Brascamp-Lieb-type inequalities, J. Eur. Math. Soc. (JEMS) 25 (2023), no. 6, 2057–2125. MR 4592865, DOI 10.4171/jems/1229
- Eric A. Carlen and Elliott H. Lieb, Brascamp-Lieb inequalities for non-commutative integration, Doc. Math. 13 (2008), 553–584. MR 2452876, DOI 10.4171/dm/254
- E. A. Carlen, E. H. Lieb, and M. Loss, A sharp analog of Young’s inequality on $S^N$ and related entropy inequalities, J. Geom. Anal. 14 (2004), no. 3, 487–520. MR 2077162, DOI 10.1007/BF02922101
- Michael Christ, James Demmel, Nicholas Knight, Thomas Scanlon, and Katherine Yelick, On Holder–Brascamp–Lieb inequalities for torsion–free discrete abelian groups, Preprint, arXiv:1510.04190, 2015.
- Jennifer Duncan, An algebraic Brascamp-Lieb inequality, J. Geom. Anal. 31 (2021), no. 10, 10136–10163. MR 4303914, DOI 10.1007/s12220-021-00638-9
- Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson, Algorithmic and optimization aspects of Brascamp-Lieb inequalities, via operator scaling, Geom. Funct. Anal. 28 (2018), no. 1, 100–145. MR 3777414, DOI 10.1007/s00039-018-0434-2
- Ben Green, Finite field models in additive combinatorics, Surveys in combinatorics 2005, London Math. Soc. Lecture Note Ser., vol. 327, Cambridge Univ. Press, Cambridge, 2005, pp. 1–27. MR 2187732, DOI 10.1017/CBO9780511734885.002
- Emmanuel Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics, vol. 5, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999. MR 1688256
- Herbert Koch and Stefan Steinerberger, Convolution estimates for singular measures and some global nonlinear Brascamp-Lieb inequalities, Proc. Roy. Soc. Edinburgh Sect. A 145 (2015), no. 6, 1223–1237. MR 3427606, DOI 10.1017/S0308210515000323
- Michel Ledoux, Heat flows, geometric and functional inequalities, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. IV, Kyung Moon Sa, Seoul, 2014, pp. 117–135. MR 3727605
- Elliott H. Lieb, Gaussian kernels have only Gaussian maximizers, Invent. Math. 102 (1990), no. 1, 179–208. MR 1069246, DOI 10.1007/BF01233426
- Thomas Schick, Manifolds with boundary and of bounded geometry, Math. Nachr. 223 (2001), 103–120. MR 1817852, DOI 10.1002/1522-2616(200103)223:1<103::AID-MANA103>3.3.CO;2-J
- Betsy Stovall, $L^p$ improving multilinear Radon-like transforms, Rev. Mat. Iberoam. 27 (2011), no. 3, 1059–1085. MR 2895344, DOI 10.4171/RMI/663
- Terence Tao, Higher order Fourier analysis, Graduate Studies in Mathematics, vol. 142, American Mathematical Society, Providence, RI, 2012. MR 2931680, DOI 10.1090/gsm/142
- Terence Tao, Sharp bounds for multilinear curved Kakeya, restriction and oscillatory integral estimates away from the endpoint, Mathematika 66 (2020), no. 2, 517–576. MR 4130338, DOI 10.1112/mtk.12029
- Terence Tao and James Wright, $L^p$ improving bounds for averages along curves, J. Amer. Math. Soc. 16 (2003), no. 3, 605–638. MR 1969206, DOI 10.1090/S0894-0347-03-00420-X
- Larry Guth, Dominique Maldague, and Hong Wang, Improved decoupling for the parabola, J. Eur. Math. Soc. (JEMS) 26 (2024), no. 3, 875–917. MR 4721026, DOI 10.4171/jems/1295
- Stefán Ingi Valdimarsson, Optimisers for the Brascamp-Lieb inequality, Israel J. Math. 168 (2008), 253–274. MR 2448061, DOI 10.1007/s11856-008-1067-1
- Stefán Ingi Valdimarsson, Geometric Brascamp-Lieb has the optimal best constant, J. Geom. Anal. 21 (2011), no. 4, 1036–1043. MR 2836590, DOI 10.1007/s12220-010-9177-5
- Ruixiang Zhang, The endpoint perturbed Brascamp-Lieb inequalities with examples, Anal. PDE 11 (2018), no. 3, 555–581. MR 3738255, DOI 10.2140/apde.2018.11.555
- Pavel Zorin-Kranich, Kakeya-Brascamp-Lieb inequalities, Collect. Math. 71 (2020), no. 3, 471–492. MR 4129538, DOI 10.1007/s13348-019-00273-2
Bibliographic Information
- Jennifer Duncan
- MR Author ID: 1457042
- ORCID: 0009-0002-0673-8818
- Received by editor(s): May 18, 2022
- Received by editor(s) in revised form: September 19, 2023, and January 3, 2024
- Published electronically: December 4, 2024
- Additional Notes: This paper was funded by a grant from the EPSRC, and forms part of the author’s PhD thesis.
- © Copyright 2024 by Jennifer Duncan
- Journal: Trans. Amer. Math. Soc. 378 (2025), 911-941
- MSC (2020): Primary 42Bxx, 39B62, 58Cxx; Secondary 35Kxx
- DOI: https://doi.org/10.1090/tran/9127