Phase space analysis of spectral multipliers for the twisted Laplacian
HTML articles powered by AMS MathViewer
- by S. Ivan Trapasso;
- Trans. Amer. Math. Soc. 378 (2025), 967-999
- DOI: https://doi.org/10.1090/tran/9224
- Published electronically: December 12, 2024
- HTML | PDF | Request permission
Abstract:
We prove boundedness results on modulation and Wiener amalgam spaces for some families of spectral multipliers for the twisted Laplacian. We exploit the metaplectic equivalence relating the twisted Laplacian with a partial harmonic oscillator, leading to a general transference principle for the corresponding spectral multipliers. Our analysis encompasses powers of the twisted Laplacian and oscillating multipliers, with applications to the corresponding Schrödinger and wave flows. On the other hand, elaborating on the twisted convolution structure of the eigenprojections and its connection with the Weyl product of symbols, we obtain a complete picture of the boundedness of the heat flow for the twisted Laplacian. Results of the same kind are established for fractional heat flows via subordination.References
- Peter Balazs, Karlheinz Gröchenig, and Michael Speckbacher, Kernel theorems in coorbit theory, Trans. Amer. Math. Soc. Ser. B 6 (2019), 346–364. MR 4031098, DOI 10.1090/btran/42
- Federico Bastianoni and Elena Cordero, Characterization of smooth symbol classes by Gabor matrix decay, J. Fourier Anal. Appl. 28 (2022), no. 1, Paper No. 3, 20. MR 4344838, DOI 10.1007/s00041-021-09895-2
- Árpád Bényi, Karlheinz Gröchenig, Kasso A. Okoudjou, and Luke G. Rogers, Unimodular Fourier multipliers for modulation spaces, J. Funct. Anal. 246 (2007), no. 2, 366–384. MR 2321047, DOI 10.1016/j.jfa.2006.12.019
- Divyang G. Bhimani, Rakesh Balhara, and Sundaram Thangavelu, Hermite multipliers on modulation spaces, Analysis and partial differential equations: perspectives from developing countries, Springer Proc. Math. Stat., vol. 275, Springer, Cham, 2019, pp. 42–64. MR 3923332, DOI 10.1007/978-3-030-05657-5_{5}
- Divyang G. Bhimani, Ramesh Manna, Fabio Nicola, Sundaram Thangavelu, and S. Ivan Trapasso, On heat equations associated with fractional harmonic oscillators, Fract. Calc. Appl. Anal. 26 (2023), no. 6, 2470–2492. MR 4673072, DOI 10.1007/s13540-023-00208-6
- Divyang G. Bhimani, Ramesh Manna, Fabio Nicola, Sundaram Thangavelu, and S. Ivan Trapasso, Phase space analysis of the Hermite semigroup and applications to nonlinear global well-posedness, Adv. Math. 392 (2021), Paper No. 107995, 18. MR 4313961, DOI 10.1016/j.aim.2021.107995
- Krzysztof Bogdan, Tomasz Byczkowski, Tadeusz Kulczycki, Michal Ryznar, Renming Song, and Zoran Vondraček, Potential analysis of stable processes and its extensions, Lecture Notes in Mathematics, vol. 1980, Springer-Verlag, Berlin, 2009. Edited by Piotr Graczyk and Andrzej Stos. MR 2569321, DOI 10.1007/978-3-642-02141-1
- The Anh Bui, Xuan Thinh Duong, Qing Hong, and Guorong Hu, On Schrödinger groups of fractional powers of Hermite operators, Int. Math. Res. Not. IMRN 7 (2023), 6164–6185. MR 4565709, DOI 10.1093/imrn/rnac037
- Ernesto Buzano and Alessandro Oliaro, Global regularity of second order twisted differential operators, J. Differential Equations 268 (2020), no. 12, 7364–7416. MR 4079003, DOI 10.1016/j.jde.2019.11.058
- Marco Cappiello, Luigi Rodino, and Joachim Toft, On the inverse to the harmonic oscillator, Comm. Partial Differential Equations 40 (2015), no. 6, 1096–1118. MR 3321072, DOI 10.1080/03605302.2015.1007145
- Duván Cardona Sánchez, Sharp estimates for the Schródinger equation associated with the twisted Laplacian, Rep. Math. Phys. 85 (2020), no. 1, 29–39. MR 4074675, DOI 10.1016/S0034-4877(20)30008-2
- Evanthia Carypis and Patrik Wahlberg, Propagation of exponential phase space singularities for Schrödinger equations with quadratic Hamiltonians, J. Fourier Anal. Appl. 23 (2017), no. 3, 530–571. MR 3649471, DOI 10.1007/s00041-016-9478-6
- Alessandra Cauli, Fabio Nicola, and Anita Tabacco, Strichartz estimates for the metaplectic representation, Rev. Mat. Iberoam. 35 (2019), no. 7, 2079–2092. MR 4029795, DOI 10.4171/rmi/1112
- Peng Chen, Xuan Thinh Duong, Ji Li, and Lixin Yan, Sharp endpoint $L^p$ estimates for Schrödinger groups, Math. Ann. 378 (2020), no. 1-2, 667–702. MR 4150932, DOI 10.1007/s00208-020-02008-2
- Elena Cordero, On the local well-posedness of the nonlinear heat equation associated to the fractional Hermite operator in modulation spaces, J. Pseudo-Differ. Oper. Appl. 12 (2021), no. 1, Paper No. 13, 13. MR 4215324, DOI 10.1007/s11868-021-00394-y
- Elena Cordero, Fabio Nicola, and Luigi Rodino, Propagation of the Gabor wave front set for Schrödinger equations with non-smooth potentials, Rev. Math. Phys. 27 (2015), no. 1, 1550001, 33. MR 3317554, DOI 10.1142/S0129055X15500014
- Elena Cordero and Fabio Nicola, Kernel theorems for modulation spaces, J. Fourier Anal. Appl. 25 (2019), no. 1, 131–144. MR 3901921, DOI 10.1007/s00041-017-9573-3
- Elena Cordero and Fabio Nicola, Sharp integral bounds for Wigner distributions, Int. Math. Res. Not. IMRN 6 (2018), 1779–1807. MR 3800635, DOI 10.1093/imrn/rnw250
- Elena Cordero, Fabio Nicola, and S. Ivan Trapasso, Dispersion, spreading and sparsity of Gabor wave packets for metaplectic and Schrödinger operators, Appl. Comput. Harmon. Anal. 55 (2021), 405–425. MR 4285849, DOI 10.1016/j.acha.2021.06.007
- Elena Cordero and Luigi Rodino, Time-frequency analysis of operators, De Gruyter Studies in Mathematics, vol. 75, De Gruyter, Berlin, [2020] ©2020. MR 4201879, DOI 10.1515/9783110532456
- Elena Cordero, Joachim Toft, and Patrik Wahlberg, Sharp results for the Weyl product on modulation spaces, J. Funct. Anal. 267 (2014), no. 8, 3016–3057. MR 3255482, DOI 10.1016/j.jfa.2014.07.011
- Piero D’Ancona, Vittoria Pierfelice, and Fulvio Ricci, On the wave equation associated to the Hermite and the twisted Laplacian, J. Fourier Anal. Appl. 16 (2010), no. 2, 294–310. MR 2600961, DOI 10.1007/s00041-009-9104-y
- Maurice A. de Gosson, Symplectic methods in harmonic analysis and in mathematical physics, Pseudo-Differential Operators. Theory and Applications, vol. 7, Birkhäuser/Springer Basel AG, Basel, 2011. MR 2827662, DOI 10.1007/978-3-7643-9992-4
- Maurice de Gosson and Franz Luef, Spectral and regularity properties of a pseudo-differential calculus related to Landau quantization, J. Pseudo-Differ. Oper. Appl. 1 (2010), no. 1, 3–34. MR 2679741, DOI 10.1007/s11868-010-0001-6
- Maurice de Gosson, Phase-space Weyl calculus and global hypoellipticity of a class of degenerate elliptic partial differential operators, New developments in pseudo-differential operators, Oper. Theory Adv. Appl., vol. 189, Birkhäuser, Basel, 2009, pp. 1–14. MR 2508850, DOI 10.1007/978-3-7643-8969-7_{1}
- Maurice A. de Gosson, Spectral properties of a class of generalized Landau operators, Comm. Partial Differential Equations 33 (2008), no. 10-12, 2096–2104. MR 2475331, DOI 10.1080/03605300802501434
- Hans G. Feichtinger and Mads S. Jakobsen, The inner kernel theorem for a certain Segal algebra, Monatsh. Math. 198 (2022), no. 4, 675–715. MR 4452172, DOI 10.1007/s00605-022-01702-4
- H. G. Feichtinger, Banach convolution algebras of Wiener type, Functions, series, operators, Vol. I, II (Budapest, 1980) Colloq. Math. Soc. János Bolyai, vol. 35, North-Holland, Amsterdam, 1983, pp. 509–524. MR 751019
- Hartmut Führ and Irina Shafkulovska, The metaplectic action on modulation spaces, Appl. Comput. Harmon. Anal. 68 (2024), Paper No. 101604, 18. MR 4665349, DOI 10.1016/j.acha.2023.101604
- Todor Gramchev, Stevan Pilipović, and Luigi Rodino, Global regularity and stability in $S$-spaces for classes of degenerate Shubin operators, Pseudo-differential operators: complex analysis and partial differential equations, Oper. Theory Adv. Appl., vol. 205, Birkhäuser Verlag, Basel, 2010, pp. 81–90. MR 2664575
- Todor Gramchev, Stevan Pilipović, and Luigi Rodino, Classes of degenerate elliptic operators in Gelfand-Shilov spaces, New developments in pseudo-differential operators, Oper. Theory Adv. Appl., vol. 189, Birkhäuser, Basel, 2009, pp. 15–31. MR 2508851, DOI 10.1007/978-3-7643-8969-7_{2}
- V. V. Grušin, A certain class of hypoelliptic operators, Mat. Sb. (N.S.) 83(125) (1970), 456–473 (Russian). MR 279436
- Bernard Helffer, Théorie spectrale pour des opérateurs globalement elliptiques, Astérisque, vol. 112, Société Mathématique de France, Paris, 1984 (French). With an English summary. MR 743094
- Michael Hitrik and Karel Pravda-Starov, Spectra and semigroup smoothing for non-elliptic quadratic operators, Math. Ann. 344 (2009), no. 4, 801–846. MR 2507625, DOI 10.1007/s00208-008-0328-y
- Anders Holst, Joachim Toft, and Patrik Wahlberg, Weyl product algebras and modulation spaces, J. Funct. Anal. 251 (2007), no. 2, 463–491. MR 2356420, DOI 10.1016/j.jfa.2007.07.007
- Lars Hörmander, Quadratic hyperbolic operators, Microlocal analysis and applications (Montecatini Terme, 1989) Lecture Notes in Math., vol. 1495, Springer, Berlin, 1991, pp. 118–160. MR 1178557, DOI 10.1007/BFb0085123
- Lars Hörmander, Symplectic classification of quadratic forms, and general Mehler formulas, Math. Z. 219 (1995), no. 3, 413–449. MR 1339714, DOI 10.1007/BF02572374
- A. J. E. M. Janssen, Hermite function description of Feichtinger’s space $S_0$, J. Fourier Anal. Appl. 11 (2005), no. 5, 577–588. MR 2182636, DOI 10.1007/s00041-005-4077-y
- Eunhee Jeong, Sanghyuk Lee, and Jaehyeon Ryu, Sharp $L^p$-$L^q$ estimate for the spectral projection associated with the twisted Laplacian, Publ. Mat. 66 (2022), no. 2, 831–855. MR 4443755, DOI 10.5565/publmat6622210
- Herbert Koch and Fulvio Ricci, Spectral projections for the twisted Laplacian, Studia Math. 180 (2007), no. 2, 103–110. MR 2314091, DOI 10.4064/sm180-2-1
- Hennie ter Morsche and Patrick J. Oonincx, On the integral representations for metaplectic operators, J. Fourier Anal. Appl. 8 (2002), no. 3, 245–257. MR 1906251, DOI 10.1007/s00041-002-0011-8
- D. Müller and F. Ricci, Analysis of second order differential operators on Heisenberg groups. I, Invent. Math. 101 (1990), no. 3, 545–582. MR 1062795, DOI 10.1007/BF01231515
- Fabio Nicola, Phase space analysis of semilinear parabolic equations, J. Funct. Anal. 267 (2014), no. 3, 727–743. MR 3212721, DOI 10.1016/j.jfa.2014.05.007
- Adam Nowak and Krzysztof Stempak, Potential operators and Laplace type multipliers associated with the twisted Laplacian, Acta Math. Sci. Ser. B (Engl. Ed.) 37 (2017), no. 1, 280–292. MR 3581541, DOI 10.1016/S0252-9602(16)30130-8
- Karel Pravda-Starov, Subelliptic estimates for quadratic differential operators, Amer. J. Math. 133 (2011), no. 1, 39–89. MR 2752935, DOI 10.1353/ajm.2011.0003
- Karel Pravda-Starov, Luigi Rodino, and Patrik Wahlberg, Propagation of Gabor singularities for Schrödinger equations with quadratic Hamiltonians, Math. Nachr. 291 (2018), no. 1, 128–159. MR 3756858, DOI 10.1002/mana.201600410
- Luigi Rodino and S. Ivan Trapasso, An introduction to the Gabor wave front set, Anomalies in partial differential equations, Springer INdAM Ser., vol. 43, Springer, Cham, [2021] ©2021, pp. 369–393. MR 4219210
- Luigi Rodino and Patrik Wahlberg, The Gabor wave front set, Monatsh. Math. 173 (2014), no. 4, 625–655. MR 3177951, DOI 10.1007/s00605-013-0592-0
- René Schulz and Patrik Wahlberg, Equality of the homogeneous and the Gabor wave front set, Comm. Partial Differential Equations 42 (2017), no. 5, 703–730. MR 3645728, DOI 10.1080/03605302.2017.1300173
- M. A. Shubin, Pseudodifferential operators and spectral theory, 2nd ed., Springer-Verlag, Berlin, 2001. Translated from the 1978 Russian original by Stig I. Andersson. MR 1852334, DOI 10.1007/978-3-642-56579-3
- Robert S. Strichartz, Harmonic analysis as spectral theory of Laplacians, J. Funct. Anal. 87 (1989), no. 1, 51–148. MR 1025883, DOI 10.1016/0022-1236(89)90004-9
- Mitsuru Sugimoto, Naohito Tomita, and Baoxiang Wang, Remarks on nonlinear operations on modulation spaces, Integral Transforms Spec. Funct. 22 (2011), no. 4-5, 351–358. MR 2801287, DOI 10.1080/10652469.2010.541054
- Sundaram Thangavelu, A note on fractional powers of the Hermite operator, Extended abstracts 2021/2022—Methusalem lectures, Trends Math., Birkhäuser/Springer, Cham, [2024] ©2024, pp. 199–207. MR 4738477, DOI 10.1007/978-3-031-48579-4_{2}0
- S. Thangavelu, Hermite and special Hermite expansions revisited, Duke Math. J. 94 (1998), no. 2, 257–278. MR 1638583, DOI 10.1215/S0012-7094-98-09413-3
- Sundaram Thangavelu, Lectures on Hermite and Laguerre expansions, Mathematical Notes, vol. 42, Princeton University Press, Princeton, NJ, 1993. With a preface by Robert S. Strichartz. MR 1215939, DOI 10.1515/9780691213927
- S. Thangavelu, Weyl multipliers, Bochner-Riesz means and special Hermite expansions, Ark. Mat. 29 (1991), no. 2, 307–321. MR 1150380, DOI 10.1007/BF02384344
- S. Thangavelu, Riesz transforms and the wave equation for the Hermite operator, Comm. Partial Differential Equations 15 (1990), no. 8, 1199–1215. MR 1070242, DOI 10.1080/03605309908820720
- S. Thangavelu, Multipliers for Hermite expansions, Rev. Mat. Iberoamericana 3 (1987), no. 1, 1–24. MR 1008442, DOI 10.4171/RMI/43
- Jingzhi Tie, The twisted Laplacian on $\Bbb C^n$ and the sub-Laplacian on $H_n$, Comm. Partial Differential Equations 31 (2006), no. 7-9, 1047–1069. MR 2254603, DOI 10.1080/03605300500455966
- Joachim Toft, Continuity and compactness for pseudo-differential operators with symbols in quasi-Banach spaces or Hörmander classes, Anal. Appl. (Singap.) 15 (2017), no. 3, 353–389. MR 3636061, DOI 10.1142/S0219530516500159
- Jan van Neerven, Pierre Portal, and Himani Sharma, Spectral multiplier theorems for abstract harmonic oscillators on UMD lattices, C. R. Math. Acad. Sci. Paris 361 (2023), 835–846. MR 4616152, DOI 10.5802/crmath.370
- M. W. Wong, Weyl transforms, the heat kernel and Green function of a degenerate elliptic operator, Ann. Global Anal. Geom. 28 (2005), no. 3, 271–283. MR 2186191, DOI 10.1007/s10455-005-1148-x
- M. W. Wong, The heat equation for the Hermite operator on the Heisenberg group, Hokkaido Math. J. 34 (2005), no. 2, 393–404. MR 2159004, DOI 10.14492/hokmj/1285766229
Bibliographic Information
- S. Ivan Trapasso
- Affiliation: Dipartimento di Scienze Matematiche “G. L. Lagrange”, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy
- MR Author ID: 1290762
- ORCID: 0000-0003-1707-8966
- Email: salvatore.trapasso@polito.it
- Received by editor(s): July 24, 2023
- Received by editor(s) in revised form: May 2, 2024
- Published electronically: December 12, 2024
- Additional Notes: The author is indebted to Fabio Nicola, Luigi Rodino and Patrik Wahlberg for fruitful discussions on the topics of this note. The author is member of Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) — Istituto Nazionale di Alta Matematica (INdAM). The present research was partially supported by the GNAMPA-INdAM project “Analisi armonica e stocastica in problemi di quantizzazione e integrazione funzionale”, award number (CUP): E55F22000270001.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 967-999
- MSC (2020): Primary 35K05, 35L05, 42B35, 35S05, 35Q40, 35R11, 35A18
- DOI: https://doi.org/10.1090/tran/9224