Testing conditions for multilinear Radon-Brascamp-Lieb inequalities
HTML articles powered by AMS MathViewer
- by Philip T. Gressman;
- Trans. Amer. Math. Soc. 378 (2025), 751-804
- DOI: https://doi.org/10.1090/tran/9254
- Published electronically: December 30, 2024
- HTML | PDF
Abstract:
This paper establishes a necessary and sufficient condition for $L^p$-boundedness of a class of multilinear functionals which includes both the Brascamp-Lieb inequalities and generalized Radon transforms associated to algebraic incidence relations. The testing condition involves bounding the average of an inverse power of certain Jacobian-type quantities along fibers of associated projections and covers many widely-studied special cases, including convolution with measures on nondegenerate hypersurfaces or on nondegenerate curves. The heart of the proof is based on Guth’s visibility lemma [Acta Math. 205 (2010), pp. 263–286] in one direction and on a careful analysis of Knapp-type examples in the other. Various applications are discussed which demonstrate new and subtle interplay between curvature and transversality and establish nontrivial mixed-norm $L^p$-improving inequalities in the model case of convolution with affine hypersurface measure on the paraboloid.References
- Jong-Guk Bak, An $L^p\text {-}L^q$ estimate for Radon transforms associated to polynomials, Duke Math. J. 101 (2000), no. 2, 259–269. MR 1738178, DOI 10.1215/S0012-7094-00-10125-1
- Jong-Guk Bak, Daniel M. Oberlin, and Andreas Seeger, Two endpoint bounds for generalized Radon transforms in the plane, Rev. Mat. Iberoamericana 18 (2002), no. 1, 231–247. MR 1924693, DOI 10.4171/RMI/317
- I. Bejenaru, S. Herr, J. Holmer, and D. Tataru, On the 2D Zakharov system with $L^2$-Schrödinger data, Nonlinearity 22 (2009), no. 5, 1063–1089. MR 2501036, DOI 10.1088/0951-7715/22/5/007
- Jonathan Bennett and Neal Bez, Some nonlinear Brascamp-Lieb inequalities and applications to harmonic analysis, J. Funct. Anal. 259 (2010), no. 10, 2520–2556. MR 2679017, DOI 10.1016/j.jfa.2010.07.015
- Jonathan Bennett, Neal Bez, Stefan Buschenhenke, Michael G. Cowling, and Taryn C. Flock, On the nonlinear Brascamp-Lieb inequality, Duke Math. J. 169 (2020), no. 17, 3291–3338. MR 4173156, DOI 10.1215/00127094-2020-0027
- Jonathan Bennett, Neal Bez, Michael G. Cowling, and Taryn C. Flock, Behaviour of the Brascamp-Lieb constant, Bull. Lond. Math. Soc. 49 (2017), no. 3, 512–518. MR 3723636, DOI 10.1112/blms.12049
- Jonathan Bennett, Neal Bez, and Susana Gutiérrez, Global nonlinear Brascamp-Lieb inequalities, J. Geom. Anal. 23 (2013), no. 4, 1806–1817. MR 3107679, DOI 10.1007/s12220-012-9307-3
- Jonathan Bennett, Neal Bez, and Susana Gutiérrez, Transversal multilinear Radon-like transforms: local and global estimates, Rev. Mat. Iberoam. 29 (2013), no. 3, 765–788. MR 3089762, DOI 10.4171/RMI/739
- Jonathan Bennett, Anthony Carbery, Michael Christ, and Terence Tao, The Brascamp-Lieb inequalities: finiteness, structure and extremals, Geom. Funct. Anal. 17 (2008), no. 5, 1343–1415. MR 2377493, DOI 10.1007/s00039-007-0619-6
- Jonathan Bennett, Anthony Carbery, Michael Christ, and Terence Tao, Finite bounds for Hölder-Brascamp-Lieb multilinear inequalities, Math. Res. Lett. 17 (2010), no. 4, 647–666. MR 2661170, DOI 10.4310/MRL.2010.v17.n4.a6
- Jonathan Bennett, Anthony Carbery, and Terence Tao, On the multilinear restriction and Kakeya conjectures, Acta Math. 196 (2006), no. 2, 261–302. MR 2275834, DOI 10.1007/s11511-006-0006-4
- Jonathan Bennett, Anthony Carbery, and James Wright, A non-linear generalisation of the Loomis-Whitney inequality and applications, Math. Res. Lett. 12 (2005), no. 4, 443–457. MR 2155223, DOI 10.4310/MRL.2005.v12.n4.a1
- Chandan Biswas, Existence of extremizers for a model convolution operator, J. Fourier Anal. Appl. 25 (2019), no. 5, 2653–2689. MR 4014812, DOI 10.1007/s00041-019-09677-x
- Jean Bourgain, Ciprian Demeter, and Larry Guth, Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three, Ann. of Math. (2) 184 (2016), no. 2, 633–682. MR 3548534, DOI 10.4007/annals.2016.184.2.7
- Anthony Carbery, Michael Christ, and James Wright, Multidimensional van der Corput and sublevel set estimates, J. Amer. Math. Soc. 12 (1999), no. 4, 981–1015. MR 1683156, DOI 10.1090/S0894-0347-99-00309-4
- Anthony Carbery and Stefán Ingi Valdimarsson, The endpoint multilinear Kakeya theorem via the Borsuk-Ulam theorem, J. Funct. Anal. 264 (2013), no. 7, 1643–1663. MR 3019726, DOI 10.1016/j.jfa.2013.01.012
- Anthony Carbery and James Wright, What is van der Corput’s lemma in higher dimensions?, Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), 2002, pp. 13–26. MR 1964813, DOI 10.5565/PUBLMAT_{E}sco02_{0}1
- Youngwoo Choi, The $L^p-L^q$ mapping properties of convolution operators with the affine arclength measure on space curves, J. Aust. Math. Soc. 75 (2003), no. 2, 247–261. MR 2000432, DOI 10.1017/S144678870000375X
- Michael Christ, Estimates for the $k$-plane transform, Indiana Univ. Math. J. 33 (1984), no. 6, 891–910. MR 763948, DOI 10.1512/iumj.1984.33.33048
- Michael Christ, Convolution, curvature, and combinatorics: a case study, Internat. Math. Res. Notices 19 (1998), 1033–1048. MR 1654767, DOI 10.1155/S1073792898000610
- Michael Christ, On extremals for a radon-like transform, arXiv:1106.0728 (2011).
- Michael Christ, Spyridon Dendrinos, Betsy Stovall, and Brian Street, Endpoint Lebesgue estimates for weighted averages on polynomial curves, Amer. J. Math. 142 (2020), no. 6, 1661–1731. MR 4176542, DOI 10.1353/ajm.2020.0042
- Michael Christ and M. Burak Erdoğan, Mixed norm estimates for certain generalized Radon transforms, Trans. Amer. Math. Soc. 360 (2008), no. 10, 5477–5488. MR 2415081, DOI 10.1090/S0002-9947-08-04548-0
- Michael Christ, Alexander Nagel, Elias M. Stein, and Stephen Wainger, Singular and maximal Radon transforms: analysis and geometry, Ann. of Math. (2) 150 (1999), no. 2, 489–577. MR 1726701, DOI 10.2307/121088
- Spyridon Dendrinos, Norberto Laghi, and James Wright, Universal $L^p$ improving for averages along polynomial curves in low dimensions, J. Funct. Anal. 257 (2009), no. 5, 1355–1378. MR 2541272, DOI 10.1016/j.jfa.2009.05.011
- S. W. Drury and Kang Hui Guo, Convolution estimates related to surfaces of half the ambient dimension, Math. Proc. Cambridge Philos. Soc. 110 (1991), no. 1, 151–159. MR 1104610, DOI 10.1017/S0305004100070201
- Jennifer Duncan, An algebraic Brascamp-Lieb inequality, J. Geom. Anal. 31 (2021), no. 10, 10136–10163. MR 4303914, DOI 10.1007/s12220-021-00638-9
- M. Burak Erdoğan and Richard Oberlin, Estimates for the $X$-ray transform restricted to 2-manifolds, Rev. Mat. Iberoam. 26 (2010), no. 1, 91–114. MR 2666309, DOI 10.4171/RMI/595
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 257325
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
- D. Geller and E. M. Stein, Estimates for singular convolution operators on the Heisenberg group, Math. Ann. 267 (1984), no. 1, 1–15. MR 737332, DOI 10.1007/BF01458467
- Loukas Grafakos, Allan Greenleaf, Alex Iosevich, and Eyvindur Palsson, Multilinear generalized Radon transforms and point configurations, Forum Math. 27 (2015), no. 4, 2323–2360. MR 3365800, DOI 10.1515/forum-2013-0128
- Michael Greenblatt, Stability of sublevel set estimates and sharp $L^2$ regularity of Radon transforms in the plane, Math. Res. Lett. 12 (2005), no. 1, 1–17. MR 2122725, DOI 10.4310/MRL.2005.v12.n1.a1
- Allan Greenleaf and Andreas Seeger, Fourier integral operators with fold singularities, J. Reine Angew. Math. 455 (1994), 35–56. MR 1293873, DOI 10.1515/crll.1994.455.35
- Allan Greenleaf and Andreas Seeger, Fourier integral operators with cusp singularities, Amer. J. Math. 120 (1998), no. 5, 1077–1119. MR 1646055, DOI 10.1353/ajm.1998.0036
- Allan Greenleaf and Andreas Seeger, Oscillatory and Fourier integral operators with degenerate canonical relations, Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), 2002, pp. 93–141. MR 1964817, DOI 10.5565/PUBLMAT_{E}sco02_{0}5
- Philip T. Gressman, Uniform geometric estimates of sublevel sets, J. Anal. Math. 115 (2011), 251–272. MR 2855039, DOI 10.1007/s11854-011-0029-4
- Philip T. Gressman, $L^p$-improving estimates for Radon-like operators and the Kakeya-Brascamp-Lieb inequality, Adv. Math. 387 (2021), Paper No. 107831, 57. MR 4271482, DOI 10.1016/j.aim.2021.107831
- Larry Guth, The endpoint case of the Bennett-Carbery-Tao multilinear Kakeya conjecture, Acta Math. 205 (2010), no. 2, 263–286. MR 2746348, DOI 10.1007/s11511-010-0055-6
- Jonathan Hickman, Uniform $L_x^p$–$L_{x,r}^q$ improving for dilated averages over polynomial curves, J. Funct. Anal. 270 (2016), no. 2, 560–608. MR 3425895, DOI 10.1016/j.jfa.2015.10.011
- A. Iosevich and E. Sawyer, Sharp $L^p$-$L^q$ estimates for a class of averaging operators, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 5, 1359–1384 (English, with English and French summaries). MR 1427130, DOI 10.5802/aif.1553
- János Kollár, Nash’s work in algebraic geometry, Bull. Amer. Math. Soc. (N.S.) 54 (2017), no. 2, 307–324. MR 3619728, DOI 10.1090/bull/1543
- Izabella Łaba and Terence Tao, An x-ray transform estimate in $\Bbb R^n$, Rev. Mat. Iberoamericana 17 (2001), no. 2, 375–407. MR 1891202, DOI 10.4171/RMI/298
- Walter Littman, $L^{p}-L^{q}$-estimates for singular integral operators arising from hyperbolic equations, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971) Proc. Sympos. Pure Math., Vol. XXIII, Amer. Math. Soc., Providence, RI, 1973, pp. 479–481. MR 358443
- Thomas L. Marzetta and Larry A. Shepp, A surprising Radon transform result and its application to motion detection, IEEE Trans. Image Process. 8 (1999), no. 8, 1039–1049. MR 1717844, DOI 10.1109/83.777085
- D. M. Oberlin and E. M. Stein, Mapping properties of the Radon transform, Indiana Univ. Math. J. 31 (1982), no. 5, 641–650., DOI 10.1512/iumj.1982.31.31046
- Daniel M. Oberlin, A convolution estimate for a measure on a curve in $\mathbf R^4$. II, Proc. Amer. Math. Soc. 127 (1999), no. 1, 217–221. MR 1476381, DOI 10.1090/S0002-9939-99-04690-0
- Daniel M. Oberlin, Convolution with affine arclength measures in the plane, Proc. Amer. Math. Soc. 127 (1999), no. 12, 3591–3592. MR 1690999, DOI 10.1090/S0002-9939-99-05462-3
- Daniel M. Oberlin, Convolution with measures on hypersurfaces, Math. Proc. Cambridge Philos. Soc. 129 (2000), no. 3, 517–526. MR 1780502, DOI 10.1017/S0305004100004552
- Daniel M. Oberlin, Convolution with measures on polynomial curves, Math. Scand. 90 (2002), no. 1, 126–138. MR 1887100, DOI 10.7146/math.scand.a-14365
- Daniel M. Oberlin, Convolution estimates and model surfaces of low codimension, J. Fourier Anal. Appl. 14 (2008), no. 3, 484–491. MR 2399110, DOI 10.1007/s00041-008-9015-3
- Richard Oberlin, Two bounds for the X-ray transform, Math. Z. 266 (2010), no. 3, 623–644. MR 2719423, DOI 10.1007/s00209-009-0589-5
- Neel Patel, Three new results on continuation criteria for the 3D relativistic Vlasov-Maxwell system, J. Differential Equations 264 (2018), no. 3, 1841–1885. MR 3721415, DOI 10.1016/j.jde.2017.10.008
- D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms. I, Acta Math. 157 (1986), no. 1-2, 99–157. MR 857680, DOI 10.1007/BF02392592
- D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms. II, Invent. Math. 86 (1986), no. 1, 75–113. MR 853446, DOI 10.1007/BF01391496
- D. H. Phong and E. M. Stein, Models of degenerate Fourier integral operators and Radon transforms, Ann. of Math. (2) 140 (1994), no. 3, 703–722. MR 1307901, DOI 10.2307/2118622
- D. H. Phong, E. M. Stein, and Jacob Sturm, Multilinear level set operators, oscillatory integral operators, and Newton polyhedra, Math. Ann. 319 (2001), no. 3, 573–596. MR 1819885, DOI 10.1007/PL00004450
- R. Ramanakoraisina, Bezout theorem for Nash functions, J. Pure Appl. Algebra 61 (1989), no. 3, 295–301. MR 1027749, DOI 10.1016/0022-4049(89)90080-7
- Fulvio Ricci, $L^p$-$L^q$ boundedness for convolution operators defined by singular measures in $\mathbf R^n$, Boll. Un. Mat. Ital. A (7) 11 (1997), no. 2, 237–252 (Italian). MR 1477777
- Alberto Ruiz and Ana Vargas, Partial recovery of a potential from backscattering data, Comm. Partial Differential Equations 30 (2005), no. 1-3, 67–96. MR 2131046, DOI 10.1081/PDE-200044450
- Silvia Secco, Fractional integration along homogeneous curves in $\textbf {R}^3$, Math. Scand. 85 (1999), no. 2, 259–270. MR 1724238, DOI 10.7146/math.scand.a-18275
- Elias M. Stein, Harmonic analysis on $R^{n}$, Studies in harmonic analysis (Proc. Conf., DePaul Univ., Chicago, Ill., 1974) MAA Stud. Math., Vol. 13, Math. Assoc. America, Washington, DC, 1976, pp. 97–135. MR 461002
- Elias M. Stein and Brian Street, Multi-parameter singular Radon transforms, Math. Res. Lett. 18 (2011), no. 2, 257–277. MR 2784671, DOI 10.4310/MRL.2011.v18.n2.a6
- Elias M. Stein and Brian Street, Multi-parameter singular Radon transforms III: Real analytic surfaces, Adv. Math. 229 (2012), no. 4, 2210–2238. MR 2880220, DOI 10.1016/j.aim.2011.11.016
- Elias M. Stein and Brian Street, Multi-parameter singular Radon transforms II: The $L^p$ theory, Adv. Math. 248 (2013), 736–783. MR 3107526, DOI 10.1016/j.aim.2013.08.016
- Betsy Stovall, Endpoint bounds for a generalized Radon transform, J. Lond. Math. Soc. (2) 80 (2009), no. 2, 357–374. MR 2545257, DOI 10.1112/jlms/jdp033
- Betsy Stovall, Quasi-extremals for convolution with surface measure on the sphere, Illinois J. Math. 53 (2009), no. 2, 391–412. MR 2594635
- Betsy Stovall, Endpoint $L^p\to L^q$ bounds for integration along certain polynomial curves, J. Funct. Anal. 259 (2010), no. 12, 3205–3229. MR 2727644, DOI 10.1016/j.jfa.2010.08.008
- Betsy Stovall, $L^p$ improving multilinear Radon-like transforms, Rev. Mat. Iberoam. 27 (2011), no. 3, 1059–1085. MR 2895344, DOI 10.4171/RMI/663
- Betsy Stovall, Uniform $L^p$-improving for weighted averages on curves, Anal. PDE 7 (2014), no. 5, 1109–1136. MR 3265961, DOI 10.2140/apde.2014.7.1109
- Brian Street, Multi-parameter singular Radon transforms I: The $L^2$ theory, J. Anal. Math. 116 (2012), 83–162. MR 2892618, DOI 10.1007/s11854-012-0004-8
- Terence Tao and James Wright, $L^p$ improving bounds for averages along curves, J. Amer. Math. Soc. 16 (2003), no. 3, 605–638. MR 1969206, DOI 10.1090/S0894-0347-03-00420-X
- Ruixiang Zhang, The endpoint perturbed Brascamp-Lieb inequalities with examples, Anal. PDE 11 (2018), no. 3, 555–581. MR 3738255, DOI 10.2140/apde.2018.11.555
Bibliographic Information
- Philip T. Gressman
- Affiliation: Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania
- MR Author ID: 690453
- Email: gressman@math.upenn.edu
- Received by editor(s): April 28, 2022
- Published electronically: December 30, 2024
- Additional Notes: This work was partially supported by NSF grants DMS-1764143 and DMS-2054602.
- © Copyright 2024 by the author
- Journal: Trans. Amer. Math. Soc. 378 (2025), 751-804
- MSC (2020): Primary 42B20, 44A12
- DOI: https://doi.org/10.1090/tran/9254