Sharp quantitative stability of the Möbius group among sphere-valued maps in arbitrary dimension
HTML articles powered by AMS MathViewer
- by André Guerra, Xavier Lamy and Konstantinos Zemas;
- Trans. Amer. Math. Soc. 378 (2025), 1235-1259
- DOI: https://doi.org/10.1090/tran/9272
- Published electronically: December 30, 2024
- HTML | PDF | Request permission
Abstract:
In this work we prove a sharp quantitative form of Liouville’s theorem, which asserts that, for all $n\geq 3$, the weakly conformal maps of $\mathbb S^{n-1}$ with degree $\pm 1$ are Möbius transformations. In the case $n=3$ this estimate was first obtained by Bernand-Mantel, Muratov and Simon [Arch. Ration. Mech. Anal. 239 (2021), pp. 219-299], with different proofs given later on by Topping, and by Hirsch and the third author. The higher-dimensional case $n\geq 4$ requires new arguments because it is genuinely nonlinear: the linearized version of the estimate involves quantities which cannot control the distance to Möbius transformations in the conformally invariant Sobolev norm. Our main tool to circumvent this difficulty is an inequality introduced by Figalli and Zhang in their proof of a sharp stability estimate for the Sobolev inequality.References
- F. Almgren, Optimal isoperimetric inequalities, Indiana Univ. Math. J. 35 (1986), no. 3, 451–547. MR 855173, DOI 10.1512/iumj.1986.35.35028
- J. M. Ball, J. C. Currie, and P. J. Olver, Null Lagrangians, weak continuity, and variational problems of arbitrary order, J. Functional Analysis 41 (1981), no. 2, 135–174. MR 615159, DOI 10.1016/0022-1236(81)90085-9
- Anne Bernand-Mantel, Cyrill B. Muratov, and Theresa M. Simon, A quantitative description of skyrmions in ultrathin ferromagnetic films and rigidity of degree $\pm 1$ harmonic maps from $\Bbb {R}^2$ to $\Bbb {S}^2$, Arch. Ration. Mech. Anal. 239 (2021), no. 1, 219–299. MR 4198719, DOI 10.1007/s00205-020-01575-7
- Gabriele Bianchi and Henrik Egnell, A note on the Sobolev inequality, J. Funct. Anal. 100 (1991), no. 1, 18–24. MR 1124290, DOI 10.1016/0022-1236(91)90099-Q
- H. Brezis and L. Nirenberg, Degree theory and BMO. I. Compact manifolds without boundaries, Selecta Math. (N.S.) 1 (1995), no. 2, 197–263. MR 1354598, DOI 10.1007/BF01671566
- B. Deng, L. Sun, and J. Wei, Quantitative stability of harmonic maps from $\mathbb R^2$ to $\mathbb S^2$, arXiv:2111.07630, 2021.
- Bin Deng, Liming Sun, and Jun-cheng Wei, Non-degeneracy and quantitative stability of half-harmonic maps from $\Bbb R$ to $\Bbb S$, Adv. Math. 420 (2023), Paper No. 108979, 42. MR 4564890, DOI 10.1016/j.aim.2023.108979
- Max Engelstein, Robin Neumayer, and Luca Spolaor, Quantitative stability for minimizing Yamabe metrics, Trans. Amer. Math. Soc. Ser. B 9 (2022), 395–414. MR 4427104, DOI 10.1090/btran/111
- Daniel Faraco and Xiao Zhong, Geometric rigidity of conformal matrices, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), no. 4, 557–585. MR 2207734
- Alessio Figalli and Robin Neumayer, Gradient stability for the Sobolev inequality: the case $p\geq 2$, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 2, 319–354. MR 3896203, DOI 10.4171/JEMS/837
- Alessio Figalli and Yi Ru-Ya Zhang, Sharp gradient stability for the Sobolev inequality, Duke Math. J. 171 (2022), no. 12, 2407–2459. MR 4484209, DOI 10.1215/00127094-2022-0051
- Rupert L. Frank, Degenerate stability of some Sobolev inequalities, Ann. Inst. H. Poincaré C Anal. Non Linéaire 39 (2022), no. 6, 1459–1484. MR 4540755, DOI 10.4171/aihpc/35
- Gero Friesecke, Richard D. James, and Stefan Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math. 55 (2002), no. 11, 1461–1506. MR 1916989, DOI 10.1002/cpa.10048
- H. Groemer, Geometric applications of Fourier series and spherical harmonics, Encyclopedia of Mathematics and its Applications, vol. 61, Cambridge University Press, Cambridge, 1996. MR 1412143, DOI 10.1017/CBO9780511530005
- Jonas Hirsch and Konstantinos Zemas, A note on a rigidity estimate for degree $\pm 1$ conformal maps on $\Bbb S^2$, Bull. Lond. Math. Soc. 54 (2022), no. 1, 256–263. MR 4408618, DOI 10.1112/blms.12591
- Norbert Hungerbühler, $m$-harmonic flow, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), no. 4, 593–631 (1998). MR 1627342
- Tadeusz Iwaniec and Gaven Martin, Geometric function theory and non-linear analysis, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2001. MR 1859913, DOI 10.1093/oso/9780198509295.001.0001
- Luc Lemaire, Applications harmoniques de surfaces riemanniennes, J. Differential Geometry 13 (1978), no. 1, 51–78 (French). MR 520601
- Fanghua Lin and Changyou Wang, The analysis of harmonic maps and their heat flows, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. MR 2431658, DOI 10.1142/9789812779533
- Stephan Luckhaus and Konstantinos Zemas, Rigidity estimates for isometric and conformal maps from $\Bbb {S}^{n-1}$ to $\Bbb R^n$, Invent. Math. 230 (2022), no. 1, 375–461. MR 4480150, DOI 10.1007/s00222-022-01128-7
- Stefan Müller, Higher integrability of determinants and weak convergence in $L^1$, J. Reine Angew. Math. 412 (1990), 20–34. MR 1078998, DOI 10.1515/crll.1990.412.20
- Stefan Müller, Vladimir Šverák, and Baisheng Yan, Sharp stability results for almost conformal maps in even dimensions, J. Geom. Anal. 9 (1999), no. 4, 671–681. MR 1757584, DOI 10.1007/BF02921978
- Yu. G. Reshetnyak, Stability theorems in geometry and analysis, Mathematics and its Applications, vol. 304, Kluwer Academic Publishers Group, Dordrecht, 1994. Translated from the 1982 Russian original by N. S. Dairbekov and V. N. Dyatlov, and revised by the author; Translation edited and with a foreword by S. S. Kutateladze. MR 1326375, DOI 10.1007/978-94-015-8360-2
- M. Rupflin, Sharp quantitative rigidity results for maps from $\mathbb S^2$ to $\mathbb S^2$ of general degree, arXiv:2305.17045, 2023.
- Peter M. Topping, A rigidity estimate for maps from $S^2$ to $S^2$ via the harmonic map flow, Bull. Lond. Math. Soc. 55 (2023), no. 1, 338–343. MR 4568345, DOI 10.1112/blms.12731
- Henry C. Wente, An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl. 26 (1969), 318–344. MR 243467, DOI 10.1016/0022-247X(69)90156-5
- Brian White, Infima of energy functionals in homotopy classes of mappings, J. Differential Geom. 23 (1986), no. 2, 127–142. MR 845702
- J. C. Wood. Harmonic mappings between surfaces. PhD thesis, Warwick University, 1974.
- Baisheng Yan, Remarks on $W^{1,p}$-stability of the conformal set in higher dimensions, Ann. Inst. H. Poincaré C Anal. Non Linéaire 13 (1996), no. 6, 691–705 (English, with English and French summaries). MR 1420494, DOI 10.1016/S0294-1449(16)30119-6
- Baisheng Yan and Zhengfang Zhou, Stability of weakly almost conformal mappings, Proc. Amer. Math. Soc. 126 (1998), no. 2, 481–489. MR 1415344, DOI 10.1090/S0002-9939-98-04079-9
Bibliographic Information
- André Guerra
- Affiliation: Institute for Theoretical Studies, ETH Zürich, CLV, Clausiusstrasse 47, 8006 Zürich, Switzerland
- ORCID: 0000-0003-0015-3720
- Email: andre.guerra@eth-its.ethz.ch
- Xavier Lamy
- Affiliation: Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118, route de Narbonne, F-31062 Toulouse Cedex 8, France
- MR Author ID: 994349
- ORCID: 0000-0002-5281-0430
- Email: Xavier.Lamy@math.univ-toulouse.fr
- Konstantinos Zemas
- Affiliation: Institute for Applied Mathematics, University of Bonn, Endenicher Allee 60, Bonn 53115, Germany
- MR Author ID: 1502229
- Email: zemas@iam.uni-bonn.de
- Received by editor(s): August 1, 2023
- Received by editor(s) in revised form: June 26, 2024
- Published electronically: December 30, 2024
- Additional Notes: The first author was supported by Dr. Max Rössler, the Walter Häfner Foundation and the ETH Zürich Foundation.The third author was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044 -390685587, Mathematics Münster: Dynamics–Geometry–Structure and was also supported by the Sonderforschungsbereich 1060 and the Hausdorff Center for Mathematics (HCM) under Germany’s Excellence Strategy -EXC-2047/1-390685813. The second author was supported by the ANR project ANR-22-CE40-0006.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 1235-1259
- MSC (2020): Primary 26D10, 30C70, 49Q20
- DOI: https://doi.org/10.1090/tran/9272