Bounded, compact and Schatten class Hankel operators on Fock-type spaces
HTML articles powered by AMS MathViewer
- by Zhicheng Zeng, Zhangjian Hu and Xiaofeng Wang;
- Trans. Amer. Math. Soc. 378 (2025), 805-849
- DOI: https://doi.org/10.1090/tran/9290
- Published electronically: December 13, 2024
- HTML | PDF | Request permission
Abstract:
In this paper, we consider Hankel operators, with locally integrable symbols, densely defined on a family of Fock-type spaces whose weights are $C^3$-logarithmic growth functions with mild smoothness conditions. It is shown that a Hankel operator is bounded on such a Fock space if and only if its symbol function has bounded distance to analytic functions BDA which is initiated by Luecking [J. Funct. Anal. 110 (1992), pp. 247–271]. We also characterize the compactness and Schatten class membership of Hankel operators. Besides, we give characterizations of the Schatten class membership of Toeplitz operators with positive measure symbols for the small exponent $0<p<1$. Our proofs depend strongly on the technique of Hömander’s $L^2$ estimates for the $\overline {\partial }$ operator and the decomposition theory of BDA spaces as well as integral estimates involving the reproducing kernel.References
- Jonathan Arazy, Stephen D. Fisher, Svante Janson, and Jaak Peetre, Membership of Hankel operators on the ball in unitary ideals, J. London Math. Soc. (2) 43 (1991), no. 3, 485–508. MR 1113389, DOI 10.1112/jlms/s2-43.3.485
- J. Arazy, S. D. Fisher, and J. Peetre, Hankel operators on weighted Bergman spaces, Amer. J. Math. 110 (1988), no. 6, 989–1053. MR 970119, DOI 10.2307/2374685
- Hicham Arroussi, Inyoung Park, and Jordi Pau, Schatten class Toeplitz operators acting on large weighted Bergman spaces, Studia Math. 229 (2015), no. 3, 203–221. MR 3454300, DOI 10.4064/sm8345-12-2015
- Hicham Arroussi and Cezhong Tong, Weighted composition operators between large Fock spaces in several complex variables, J. Funct. Anal. 277 (2019), no. 10, 3436–3466. MR 4001076, DOI 10.1016/j.jfa.2019.04.008
- Wolfram Bauer, Hilbert-Schmidt Hankel operators on the Segal-Bargmann space, Proc. Amer. Math. Soc. 132 (2004), no. 10, 2989–2996. MR 2063120, DOI 10.1090/S0002-9939-04-07264-8
- Wolfram Bauer, Mean oscillation and Hankel operators on the Segal-Bargmann space, Integral Equations Operator Theory 52 (2005), no. 1, 1–15. MR 2138695, DOI 10.1007/s00020-003-1272-6
- D. Békollé, C. A. Berger, L. A. Coburn, and K. H. Zhu, BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal. 93 (1990), no. 2, 310–350. MR 1073289, DOI 10.1016/0022-1236(90)90131-4
- C. A. Berger, L. A. Coburn, and K. H. Zhu, BMO on the Bergman spaces of the classical domains, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 133–136. MR 888889, DOI 10.1090/S0273-0979-1987-15539-X
- Hélène Bommier-Hato and Olivia Constantin, Big Hankel operators on vector-valued Fock spaces in $\Bbb {C}^d$, Integral Equations Operator Theory 90 (2018), no. 1, Paper No. 2, 25. MR 3768885, DOI 10.1007/s00020-018-2433-y
- Olivia Constantin and Joaquim Ortega-Cerdà, Some spectral properties of the canonical solution operator to $\overline {\partial }$ on weighted Fock spaces, J. Math. Anal. Appl. 377 (2011), no. 1, 353–361. MR 2754834, DOI 10.1016/j.jmaa.2010.10.074
- Jean-Pierre Demailly, Estimations $L^{2}$ pour l’opérateur $\bar \partial$ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 3, 457–511 (French). MR 690650, DOI 10.24033/asens.1434
- Quanlei Fang and Jingbo Xia, Hankel operators on weighted Bergman spaces and norm ideals, Complex Anal. Oper. Theory 12 (2018), no. 3, 629–668. MR 3770363, DOI 10.1007/s11785-017-0710-4
- Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639
- Zhangjian Hu and Jani A. Virtanen, Schatten class Hankel operators on the Segal-Bargmann space and the Berger-Coburn phenomenon, Trans. Amer. Math. Soc. 375 (2022), no. 5, 3733–3753. MR 4402674, DOI 10.1090/tran/8638
- Zhangjian Hu and Jani A. Virtanen, IDA and Hankel operators on Fock spaces, Anal. PDE 16 (2023), no. 9, 2041–2077. MR 4668087, DOI 10.2140/apde.2023.16.2041
- Zhangjian Hu and Ermin Wang, Hankel operators between Fock spaces, Integral Equations Operator Theory 90 (2018), no. 3, Paper No. 37, 20. MR 3803293, DOI 10.1007/s00020-018-2459-1
- J. Isralowitz, Schatten $p$ class Hankel operators on the Segal-Bargmann space $H^2(\Bbb C^n,\textrm {d}\mu )$ for $0<p<1$, J. Operator Theory 66 (2011), no. 1, 145–160. MR 2806550
- Joshua Isralowitz, Jani Virtanen, and Lauren Wolf, Schatten class Toeplitz operators on generalized Fock spaces, J. Math. Anal. Appl. 421 (2015), no. 1, 329–337. MR 3250481, DOI 10.1016/j.jmaa.2014.05.065
- Huiping Li and Daniel H. Luecking, Schatten class of Hankel and Toeplitz operators on the Bergman space of strongly pseudoconvex domains, Multivariable operator theory (Seattle, WA, 1993) Contemp. Math., vol. 185, Amer. Math. Soc., Providence, RI, 1995, pp. 237–257. MR 1332063, DOI 10.1090/conm/185/02157
- Peng Lin and Richard Rochberg, Trace ideal criteria for Toeplitz and Hankel operators on the weighted Bergman spaces with exponential type weights, Pacific J. Math. 173 (1996), no. 1, 127–146. MR 1387794, DOI 10.2140/pjm.1996.173.127
- Daniel H. Luecking, Characterizations of certain classes of Hankel operators on the Bergman spaces of the unit disk, J. Funct. Anal. 110 (1992), no. 2, 247–271. MR 1194989, DOI 10.1016/0022-1236(92)90034-G
- Jie Miao, Schatten class Hankel operators on the harmonic Bergman space of the unit ball, Integral Equations Operator Theory 59 (2007), no. 1, 53–65. MR 2351274, DOI 10.1007/s00020-007-1508-y
- Jordi Pau, Characterization of Schatten-class Hankel operators on weighted Bergman spaces, Duke Math. J. 165 (2016), no. 14, 2771–2791. MR 3551773, DOI 10.1215/00127094-3627310
- Jordi Pau, Ruhan Zhao, and Kehe Zhu, Weighted BMO and Hankel operators between Bergman spaces, Indiana Univ. Math. J. 65 (2016), no. 5, 1639–1673. MR 3571442, DOI 10.1512/iumj.2016.65.5882
- José Ángel Peláez, Antti Perälä, and Jouni Rättyä, Hankel operators induced by radial Bekollé-Bonami weights on Bergman spaces, Math. Z. 296 (2020), no. 1-2, 211–238. MR 4140739, DOI 10.1007/s00209-019-02412-8
- Kristian Seip and El Hassan Youssfi, Hankel operators on Fock spaces and related Bergman kernel estimates, J. Geom. Anal. 23 (2013), no. 1, 170–201. MR 3010276, DOI 10.1007/s12220-011-9241-9
- Zhi Hao Tu and Xiao Feng Wang, Mean oscillation and Hankel operators on Fock-type spaces, Acta Math. Sin. (Engl. Ser.) 37 (2021), no. 7, 1089–1108. MR 4292198, DOI 10.1007/s10114-021-0526-z
- Xiaofeng Wang, Guangfu Cao, and Kehe Zhu, BMO and Hankel operators on Fock-type spaces, J. Geom. Anal. 25 (2015), no. 3, 1650–1665. MR 3358068, DOI 10.1007/s12220-014-9488-z
- Xiaofeng Wang, Zhihao Tu, and Zhangjian Hu, Bounded and compact Toeplitz operators with positive measure symbol on Fock-type spaces, J. Geom. Anal. 30 (2020), no. 4, 4324–4355. MR 4167285, DOI 10.1007/s12220-019-00244-w
- Xiaofeng Wang and Zhicheng Zeng, Boundedness and compactness of Hankel operators on large Fock space, J. Funct. Spaces , posted on (2022), Art. ID 7035925, 12. MR 4368409, DOI 10.1155/2022/7035925
- Jingbo Xia, Hankel operators in the Bergman space and Schatten $p$-classes: the case $1<p<2$, Proc. Amer. Math. Soc. 129 (2001), no. 12, 3559–3567. MR 1860488, DOI 10.1090/S0002-9939-01-06217-7
- Jingbo Xia and Dechao Zheng, Standard deviation and Schatten class Hankel operators on the Segal-Bargmann space, Indiana Univ. Math. J. 53 (2004), no. 5, 1381–1399. MR 2104282, DOI 10.1512/iumj.2004.53.2434
- Zhicheng Zeng, Xiaofeng Wang, and Zhangjian Hu, Schatten class Hankel operators on exponential Bergman spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 117 (2023), no. 1, Paper No. 23, 19. MR 4514504, DOI 10.1007/s13398-022-01357-8
- Ke He Zhu, Schatten class Hankel operators on the Bergman space of the unit ball, Amer. J. Math. 113 (1991), no. 1, 147–167. MR 1087805, DOI 10.2307/2374825
- Kehe Zhu, Operator theory in function spaces, 2nd ed., Mathematical Surveys and Monographs, vol. 138, American Mathematical Society, Providence, RI, 2007. MR 2311536, DOI 10.1090/surv/138
- Kehe Zhu, Analysis on Fock spaces, Graduate Texts in Mathematics, vol. 263, Springer, New York, 2012. MR 2934601, DOI 10.1007/978-1-4419-8801-0
Bibliographic Information
- Zhicheng Zeng
- Affiliation: School of Mathematics and Information Science, Guangzhou University, Guangzhou, People’s Republic of China
- Email: zhichengzeng@e.gzhu.edu.cn
- Zhangjian Hu
- Affiliation: Department of Mathematics, Huzhou University, Huzhou, Zhejiang, People’s Republic of China
- MR Author ID: 227292
- ORCID: 0000-0002-0289-6467
- Email: huzj@zjhu.edu.cn
- Xiaofeng Wang
- Affiliation: School of Mathematics and Information Science, Guangzhou University, Guangzhou, People’s Republic of China
- Email: wxf@gzhu.edu.cn
- Received by editor(s): September 28, 2023
- Published electronically: December 13, 2024
- Additional Notes: The first author was supported by the Graduate Innovation Ability Training Project of Guangzhou University.
The second author was supported in part by the National Natural Science Foundation of China (12071130, 12171150).
The third author was supported in part by the National Natural Science Foundation of China (12471119, 11971125).
The third author is the corresponding author. - © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 805-849
- MSC (2020): Primary 47B35, 47B10; Secondary 30H20, 32A37
- DOI: https://doi.org/10.1090/tran/9290