Quasi-tempered automorphic D-modules
HTML articles powered by AMS MathViewer
- by Joakim Færgeman;
- Trans. Amer. Math. Soc. 378 (2025), 1401-1431
- DOI: https://doi.org/10.1090/tran/9292
- Published electronically: November 19, 2024
- HTML | PDF | Request permission
Abstract:
In this paper, we introduce the category of quasi-tempered automorphic D-modules, which is a rather natural class of D-modules from the point of view of geometric Langlands. We provide a characterization of this category in terms of singular support, and as a consequence, we obtain certain microlocal categorical Künneth formulas.References
- D. Arinkin and D. Gaitsgory, Singular support of coherent sheaves and the geometric Langlands conjecture, Selecta Math. (N.S.) 21 (2015), no. 1, 1–199. MR 3300415, DOI 10.1007/s00029-014-0167-5
- Dima Arinkin, Dennis Gaitsgory, David Kazhdan, Sam Raskin, Nick Rozenblyum, and Yasha Varshavsky, The stack of local systems with restricted variation and geometric Langlands theory with nilpotent singular support, arXiv:2010.01906, 2020.
- Dario Beraldo, Loop group actions on categories and Whittaker invariants, Adv. Math. 322 (2017), 565–636. MR 3720805, DOI 10.1016/j.aim.2017.10.024
- Dario Beraldo, The spectral gluing theorem revisited, Épijournal de Géométrie Algébrique 4, 2020.
- Dario Beraldo, On the geometric Ramanujan conjecture, arXiv:2103.17211, 2021.
- Dario Beraldo, Tempered d-modules and borel–moore homology vanishing, Inventiones mathematicae 225 (2021), no. 2, 453–528.
- Roman Bezrukavnikov and Michael Finkelberg, Equivariant Satake category and Kostant-Whittaker reduction, Mosc. Math. J. 8 (2008), no. 1, 39–72, 183 (English, with English and Russian summaries). MR 2422266, DOI 10.17323/1609-4514-2008-8-1-39-72
- Indranil Biswas, Swarnava Mukhopadhyay, and Arjun Paul, Fundamental groups of moduli of principal bundles on curves, Geom. Dedicata 214 (2021), 629–650. MR 4308295, DOI 10.1007/s10711-021-00631-0
- V. Drinfeld and D. Gaitsgory, Compact generation of the category of D-modules on the stack of $G$-bundles on a curve, Camb. J. Math. 3 (2015), no. 1-2, 19–125. MR 3356356, DOI 10.4310/CJM.2015.v3.n1.a2
- Vladimir Drinfeld and Dennis Gaitsgory, On some finiteness questions for algebraic stacks, Geom. Funct. Anal. 23 (2013), no. 1, 149–294. MR 3037900, DOI 10.1007/s00039-012-0204-5
- V. G. Drinfel′d and Carlos Simpson, $B$-structures on $G$-bundles and local triviality, Math. Res. Lett. 2 (1995), no. 6, 823–829. MR 1362973, DOI 10.4310/MRL.1995.v2.n6.a13
- Joakim Færgeman and Sam Raskin, The Arinkin-Gaitsgory temperedness conjecture, Bull. Lond. Math. Soc. 55 (2023), no. 3, 1419–1446. MR 4618235, DOI 10.1112/blms.12801
- Joakim Færgeman and Sam Raskin, Non-vanishing of geometric whittaker coefficients for reductive groups, (2022).
- Dennis Gaitsgory, ind-coherent sheaves, Mosc. Math. J. 13 (2013), no. 3, 399–528, 553 (English, with English and Russian summaries). MR 3136100, DOI 10.17323/1609-4514-2013-13-3-399-528
- Dennis Gaitsgory, Contractibility of the space of rational maps, Invent. Math. 191 (2013), no. 1, 91–196. MR 3004779, DOI 10.1007/s00222-012-0392-5
- D. Gaitsgory, D. Kazhdan, N. Rozenblyum, and Y. Varshavsky, A toy model for the Drinfeld-Lafforgue shtuka construction, Indag. Math. (N.S.) 33 (2022), no. 1, 39–189. MR 4368480, DOI 10.1016/j.indag.2021.11.002
- Dennis Gaitsgory and Nick Rozenblyum, A study in derived algebraic geometry. Vol. II. Deformations, Lie theory and formal geometry, Mathematical Surveys and Monographs, vol. 221, American Mathematical Society, Providence, RI, 2017. MR 3701353, DOI 10.1090/surv/221.2
- Norbert Hoffmann, On moduli stacks of $G$-bundles over a curve, Affine flag manifolds and principal bundles, Trends Math., Birkhäuser/Springer Basel AG, Basel, 2010, pp. 155–163. MR 3013030, DOI 10.1007/978-3-0346-0288-4_{5}
- Dihua Jiang, Automorphic integral transforms for classical groups I: Endoscopy correspondences, Automorphic forms and related geometry: assessing the legacy of I. I. Piatetski-Shapiro, Contemp. Math., vol. 614, Amer. Math. Soc., Providence, RI, 2014, pp. 179–242. MR 3220929, DOI 10.1090/conm/614/12253
- Masaki Kashiwara and Pierre Schapira, Regular and irregular holonomic D-modules, London Mathematical Society Lecture Note Series, vol. 433, Cambridge University Press, Cambridge, 2016. MR 3524769, DOI 10.1017/CBO9781316675625
- S. Lysenko, Fourier coefficients and a filtration on $Shv(\textrm {Bun}_G)$, Adv. Math. 431 (2023), Paper No. 109250, 34. MR 4631995, DOI 10.1016/j.aim.2023.109250
- David Nadler and Zhiwei Yun, Spectral action in Betti geometric Langlands, Israel J. Math. 232 (2019), no. 1, 299–349. MR 3990944, DOI 10.1007/s11856-019-1871-9
- Behrang Noohi, Foundations of topological stacks i, arXiv:math/0503247, 2005.
Bibliographic Information
- Joakim Færgeman
- Affiliation: Department of Mathematics, The University of Texas at Austin, PMA 11.156, 2515 Speedway Stop C1200, Austin, Texas 78712
- MR Author ID: 1570737
- Email: joakim.faergeman@yale.edu
- Received by editor(s): January 5, 2023
- Received by editor(s) in revised form: July 28, 2024
- Published electronically: November 19, 2024
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 1401-1431
- MSC (2020): Primary 14D24, 14F10, 18F99
- DOI: https://doi.org/10.1090/tran/9292