Local structure of homogeneous $ANR$-spaces
HTML articles powered by AMS MathViewer
- by Vesko Valov;
- Trans. Amer. Math. Soc. 378 (2025), 1449-1463
- DOI: https://doi.org/10.1090/tran/9296
- Published electronically: October 17, 2024
- HTML | PDF | Request permission
Abstract:
We investigate to what extend finite-dimensional homogeneous locally compact $ANR$-spaces have common properties with topological manifolds. Specially, the local structure of homogeneous $ANR$-spaces is described. Using that description, we provide a positive solution of the problem whether every finite-dimensional homogeneous metric $ANR$-compactum $X$ is dimensionally full-valued, i.e. $\dim X\times Y=\dim X+\dim Y$ for any metric compactum $Y$.References
- R. H. Bing and K. Borsuk, Some remarks concerning topologically homogeneous spaces, Ann. of Math. (2) 81 (1965), 100–111. MR 172255, DOI 10.2307/1970385
- Karol Borsuk, Theory of retracts, Monografie Matematyczne [Mathematical Monographs], Tom 44, Państwowe Wydawnictwo Naukowe, Warsaw, 1967. MR 216473
- J. Bryant, Reflections on the Bing-Borsuk conjecture, Abstract of the talks presented at the 19th Annual Workshop in Geometric Topology, June 13-15, 2002, 2-3.
- J. Bryant and S. Ferry, An alpha approximation theorem for homology manifolds: counterexamples to the Bing-Borsuk conjecture, preprint.
- Manuel Cárdenas, Francisco F. Lasheras, Antonio Quintero, and Dušan Repovš, On manifolds with nonhomogeneous factors, Cent. Eur. J. Math. 10 (2012), no. 3, 857–862. MR 2902218, DOI 10.2478/s11533-012-0026-6
- J. S. Choi, Properties of $n$-bubbles in $n$-dimensional compacta and the existence of $(n-1)$-bubbles in $n$-dimensional $\textrm {clc}^n$ compacta, Proceedings of the 1998 Topology and Dynamics Conference (Fairfax, VA), 1998, pp. 101–120. MR 1743802
- A. Dranishnikov, Cohomological dimension theory of compact metric spaces, Topology Atlas invited contributions, http://at.yorku.ca/topology.taic.html (see also arXiv:math/0501523).
- A. N. Dranishnikov, On a problem of P. S. Aleksandrov, Mat. Sb. (N.S.) 135(177) (1988), no. 4, 551–557, 560 (Russian); English transl., Math. USSR-Sb. 63 (1989), no. 2, 539–545. MR 942139, DOI 10.1070/SM1989v063n02ABEH003290
- A. N. Dranishnikov, Homological dimension theory, Uspekhi Mat. Nauk 43 (1988), no. 4(262), 11–55, 255 (Russian); English transl., Russian Math. Surveys 43 (1988), no. 4, 11–63. MR 969565, DOI 10.1070/RM1988v043n04ABEH001900
- Jerzy Dydak, Cohomological dimension and metrizable spaces, Trans. Amer. Math. Soc. 337 (1993), no. 1, 219–234. MR 1153013, DOI 10.1090/S0002-9947-1993-1153013-X
- Edward G. Effros, Transformation groups and $C^{\ast }$-algebras, Ann. of Math. (2) 81 (1965), 38–55. MR 174987, DOI 10.2307/1970381
- Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, NJ, 1952. MR 50886, DOI 10.1515/9781400877492
- V. V. Fedorchuk, On homogeneous Pontryagin surfaces, Dokl. Akad. Nauk 404 (2005), no. 5, 601–603 (Russian). MR 2256818
- W. Jakobsche, The Bing-Borsuk conjecture is stronger than the Poincaré conjecture, Fund. Math. 106 (1980), no. 2, 127–134. MR 580590, DOI 10.4064/fm-106-2-127-134
- Denise M. Halverson and Dušan Repovš, The Bing-Borsuk and the Busemann conjectures, Math. Commun. 13 (2008), no. 2, 163–184. MR 2488667
- A. È. Harlap, Local homology and cohomology, homological dimension, and generalized manifolds, Mat. Sb. (N.S.) 96(138) (1975), 347–373, 503 (Russian). MR 645364
- Peter J. Huber, Homotopical cohomology and Čech cohomology, Math. Ann. 144 (1961), 73–76. MR 133821, DOI 10.1007/BF01396544
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, NJ, 1941. MR 6493
- Yukihiro Kodama, Note on an absolute neighborhood extensor for metric spaces, J. Math. Soc. Japan 8 (1956), 206–215. MR 81456, DOI 10.2969/jmsj/00830206
- Yukihiro Kodama, On a problem of Alexandroff concerning the dimension of product spaces. II, J. Math. Soc. Japan 11 (1959), 94–111. MR 116307, DOI 10.2969/jmsj/01120094
- V. Kuz′minov, On $V^{n}$ continua, Dokl. Akad. Nauk SSSR 139 (1961), 24–27 (Russian). MR 165523
- V. Kuz’minov, Homological dimension theory, Russian Math. Surveys 23 (1968), no. 1, 1–45.
- J. M. Łysko, Some theorems concerning finite dimensional homogeneous ANR-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), no. 7, 491–496 (English, with Russian summary). MR 413110
- Deane Montgomery, Locally homogeneous spaces, Ann. of Math. (2) 52 (1950), 261–271. MR 43794, DOI 10.2307/1969469
- Hans-Peter Seidel, Locally homogeneous ANR-spaces, Arch. Math. (Basel) 44 (1985), no. 1, 79–81. MR 778995, DOI 10.1007/BF01193784
- E. G. Skljarenko, Homology theory and the exactness axiom, Uspehi Mat. Nauk 24 (1969), no. 5(149), 87–140 (Russian). MR 263071
- Akira Tominaga and Tadashi Tanaka, Convexification of locally connected generalized continua, J. Sci. Hiroshima Univ. Ser. A 19 (1955), 301–306. MR 78677
- V. Valov, Homogeneous $ANR$-spaces and Alexandroff manifolds, Topology Appl. 173 (2014), 227–233. MR 3227218, DOI 10.1016/j.topol.2014.06.001
- V. Valov, Local cohomological properties of homogeneous ANR compacta, Fund. Math. 233 (2016), no. 3, 257–270. MR 3480120, DOI 10.4064/fm93-12-2015
- V. Valov, Homological dimension and homogeneous ANR spaces, Topology Appl. 221 (2017), 38–50. MR 3624443, DOI 10.1016/j.topol.2017.02.063
- Vesko Valov, Separation of homogeneous connected locally compact spaces, Proc. Amer. Math. Soc. Ser. B 11 (2024), 36–46. MR 4713118, DOI 10.1090/bproc/207
Bibliographic Information
- Vesko Valov
- Affiliation: Department of Computer Science and Mathematics, Nipissing University, 100 College Drive, P.O. Box 5002, North Bay, Ontario P1B 8L7, Canada
- MR Author ID: 176775
- ORCID: 0000-0001-5702-5784
- Email: veskov@nipissingu.ca
- Received by editor(s): April 12, 2023
- Received by editor(s) in revised form: August 1, 2024
- Published electronically: October 17, 2024
- Additional Notes: The author was partially supported by NSERC Grant 261914-19.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 1449-1463
- MSC (2020): Primary 55M15; Secondary 55M10
- DOI: https://doi.org/10.1090/tran/9296
Dedicated: Dedicated to Prof. Georgi Dimov on the occasion of his 75th birthday