Ergodic recurrence and bounded gaps between primes
HTML articles powered by AMS MathViewer
- by Hao Pan;
- Trans. Amer. Math. Soc. 378 (2025), 1215-1234
- DOI: https://doi.org/10.1090/tran/9299
- Published electronically: December 30, 2024
- HTML | PDF | Request permission
Abstract:
Let $(\mathcal {X},\mathscr {B}_\mathcal {X},\mu ,T)$ be a measure-preserving probability system with $T$ is invertible. Suppose that $A\in \mathscr {B}_\mathcal {X}$ with $\mu (A)>0$ and $\epsilon >0$. For any $m\geq 1$, there exist infinitely many primes $p_0,p_1,\ldots ,p_m$ with $p_0<\cdots <p_m$ such that \begin{equation*} \mu (A\cap T^{-(p_i-1)}A)\geq \mu (A)^2-\epsilon \end{equation*} for each $0\leq i\leq m$ and \begin{equation*} p_m-p_0<C_{m,A,\epsilon }, \end{equation*} where $C_{m,A,\epsilon }>0$ is a constant only depending on $m$, $A$ and $\epsilon$.References
- Ryan Alweiss and Sammy Luo, Bounded gaps between primes in short intervals, Res. Number Theory 4 (2018), no. 2, Paper No. 15, 27. MR 3777512, DOI 10.1007/s40993-018-0109-y
- Roger C. Baker and Liangyi Zhao, Gaps between primes in Beatty sequences, Acta Arith. 172 (2016), no. 3, 207–242. MR 3460812, DOI 10.4064/aa7993-1-2016
- Antal Balog and Alberto Perelli, Exponential sums over primes in an arithmetic progression, Proc. Amer. Math. Soc. 93 (1985), no. 4, 578–582. MR 776182, DOI 10.1090/S0002-9939-1985-0776182-0
- Vitaly Bergelson, Bernard Host, and Bryna Kra, Multiple recurrence and nilsequences, Invent. Math. 160 (2005), no. 2, 261–303. With an appendix by Imre Ruzsa. MR 2138068, DOI 10.1007/s00222-004-0428-6
- Vitaly Bergelson and Emmanuel Lesigne, Van der Corput sets in $\Bbb Z^d$, Colloq. Math. 110 (2008), no. 1, 1–49. MR 2353898, DOI 10.4064/cm110-1-1
- Qing Chu, Multiple recurrence for two commuting transformations, Ergodic Theory Dynam. Systems 31 (2011), no. 3, 771–792. MR 2794947, DOI 10.1017/S0143385710000258
- Qing Chu, Nikos Frantzikinakis, and Bernard Host, Ergodic averages of commuting transformations with distinct degree polynomial iterates, Proc. Lond. Math. Soc. (3) 102 (2011), no. 5, 801–842. MR 2795725, DOI 10.1112/plms/pdq037
- Lynn Chua, Soohyun Park, and Geoffrey D. Smith, Bounded gaps between primes in special sequences, Proc. Amer. Math. Soc. 143 (2015), no. 11, 4597–4611. MR 3391020, DOI 10.1090/proc/12607
- Manfred Einsiedler and Thomas Ward, Ergodic theory with a view towards number theory, Graduate Texts in Mathematics, vol. 259, Springer-Verlag London, Ltd., London, 2011. MR 2723325, DOI 10.1007/978-0-85729-021-2
- Nikos Frantzikinakis, Multiple ergodic averages for three polynomials and applications, Trans. Amer. Math. Soc. 360 (2008), no. 10, 5435–5475. MR 2415080, DOI 10.1090/S0002-9947-08-04591-1
- Harry Furstenberg, Poincaré recurrence and number theory, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 3, 211–234. MR 628658, DOI 10.1090/S0273-0979-1981-14932-6
- Daniel A. Goldston, János Pintz, and Cem Y. Yıldırım, Primes in tuples. I, Ann. of Math. (2) 170 (2009), no. 2, 819–862. MR 2552109, DOI 10.4007/annals.2009.170.819
- Andrew Granville, Primes in intervals of bounded length, Bull. Amer. Math. Soc. (N.S.) 52 (2015), no. 2, 171–222. MR 3312631, DOI 10.1090/S0273-0979-2015-01480-1
- Ben Green and Terence Tao, The Möbius function is strongly orthogonal to nilsequences, Ann. of Math. (2) 175 (2012), no. 2, 541–566. MR 2877066, DOI 10.4007/annals.2012.175.2.3
- Henry Helson, Harmonic analysis, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983. MR 729682
- Bernard Host and Bryna Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2) 161 (2005), no. 1, 397–488. MR 2150389, DOI 10.4007/annals.2005.161.397
- Caleb Ji, Joshua Kazdan, and Vaughan McDonald, Primes with Beatty and Chebotarev conditions, J. Number Theory 216 (2020), 307–334. MR 4130085, DOI 10.1016/j.jnt.2020.03.003
- A. Khintchine, Eine Verschärfung des Poincaréschen “Wiederkehrsatzes”, Compositio Math. 1 (1935), 177–179 (German). MR 1556883
- Hongze Li and Hao Pan, Bounded gaps between primes of a special form, Int. Math. Res. Not. IMRN 23 (2015), 12345–12365. MR 3431623, DOI 10.1093/imrn/rnv049
- Hongze Li and Hao Pan, Small gaps between the Piatetski-Shapiro primes, Trans. Amer. Math. Soc. 373 (2020), no. 12, 8463–8484. MR 4177265, DOI 10.1090/tran/8205
- Jianya Liu and Tao Zhan, The ternary Goldbach problem in arithmetic progressions, Acta Arith. 82 (1997), no. 3, 197–227. MR 1482887, DOI 10.4064/aa-82-3-197-227
- James Maynard, Small gaps between primes, Ann. of Math. (2) 181 (2015), no. 1, 383–413. MR 3272929, DOI 10.4007/annals.2015.181.1.7
- Paul Pollack, Bounded gaps between primes with a given primitive root, Algebra Number Theory 8 (2014), no. 7, 1769–1786. MR 3272281, DOI 10.2140/ant.2014.8.1769
- D. H. J. Polymath, Variants of the Selberg sieve, and bounded intervals containing many primes, Res. Math. Sci. 1 (2014), Art. 12, 83. MR 3373710, DOI 10.1186/s40687-014-0012-7
- A. Sárközy, On difference sets of sequences of integers. III, Acta Math. Acad. Sci. Hungar. 31 (1978), no. 3-4, 355–386. MR 487031, DOI 10.1007/BF01901984
- A. V. Shubin, Bounded gaps between primes of special form, Dokl. Math. 101 (2020), no. 3, 235–238. Translation of Dokl. Akad. Nauk 492 (2020), 75–78. MR 4431693, DOI 10.1134/s1064562420030199
- T. Tao, Polymath8b: Bounded intervals with many primes, after Maynard, http://terrytao.wordpress.com/2013/11/19/polymath8b-bounded-intervals-with-many-primes-after-maynard.
- Jesse Thorner, Bounded gaps between primes in Chebotarev sets, Res. Math. Sci. 1 (2014), Art. 4, 16. MR 3344173, DOI 10.1186/2197-9847-1-4
- Akshaa Vatwani, Bounded gaps between Gaussian primes, J. Number Theory 171 (2017), 449–473. MR 3556693, DOI 10.1016/j.jnt.2016.07.008
- Vinogradov,I. M.: The method of trigonometrical sums in the theory of numbers, translated, revised and annotated by K. F. Roth and Anne Davenport, Interscience Publishers, London and New York, 1954.
- Trevor D. Wooley and Tamar D. Ziegler, Multiple recurrence and convergence along the primes, Amer. J. Math. 134 (2012), no. 6, 1705–1732. MR 2999293, DOI 10.1353/ajm.2012.0048
- Yitang Zhang, Bounded gaps between primes, Ann. of Math. (2) 179 (2014), no. 3, 1121–1174. MR 3171761, DOI 10.4007/annals.2014.179.3.7
Bibliographic Information
- Hao Pan
- Affiliation: School of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing 210046, People’s Republic of China
- ORCID: 0000-0003-4307-5953
- Email: haopan79@zoho.com
- Received by editor(s): August 27, 2023
- Received by editor(s) in revised form: June 22, 2024
- Published electronically: December 30, 2024
- Additional Notes: The author was supported by the National Natural Science Foundation of China (Grants No. 12071208 and 12471312).
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 1215-1234
- MSC (2020): Primary 11N05, 37A44; Secondary 05D10, 11L20, 11N36, 37A05
- DOI: https://doi.org/10.1090/tran/9299