Interpolation sets for dynamical systems
HTML articles powered by AMS MathViewer
- by Andreas Koutsogiannis, Anh N. Le, Joel Moreira, Ronnie Pavlov and Florian K. Richter;
- Trans. Amer. Math. Soc. 378 (2025), 1373-1400
- DOI: https://doi.org/10.1090/tran/9300
- Published electronically: October 17, 2024
- HTML | PDF | Request permission
Abstract:
Originating in harmonic analysis, interpolation sets were first studied in dynamics by Glasner and Weiss in the 1980s [Israel J. Math. 44 (1983), pp. 345–360]. A set $S\subset \mathbb {N}$ is an interpolation set for a class of topological dynamical systems $\mathcal {C}$ if any bounded sequence on $S$ can be extended to a sequence that arises from a system in $\mathcal {C}$. In this paper, we provide combinatorial characterizations of interpolation sets for:
Additionally, we prove some results on a slightly different notion, called weak interpolation sets, for several classes of systems. We also answer a question of Host, Kra, and Maass [Monatsh. Math. 179 (2016), pp. 57–89] concerning the connection between sets of pointwise recurrence for distal systems and $IP$-sets.
References
- Ethan Akin and Jeffrey D. Carlson, Conceptions of topological transitivity, Topology Appl. 159 (2012), no. 12, 2815–2830. MR 2942654, DOI 10.1016/j.topol.2012.04.016
- Jop Briët and Ben Green, Multiple correlation sequences not approximable by nilsequences, Ergodic Theory Dynam. Systems 42 (2022), no. 9, 2711–2722. MR 4461688, DOI 10.1017/etds.2021.66
- Stephen William Drury, Sur les ensembles de Sidon, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A162–A163 (French). MR 271647
- Tanja Eisner, A polynomial version of Sarnak’s conjecture, C. R. Math. Acad. Sci. Paris 353 (2015), no. 7, 569–572 (English, with English and French summaries). MR 3352023, DOI 10.1016/j.crma.2015.04.009
- M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), no. 1, 228–249 (German). MR 1544613, DOI 10.1007/BF01504345
- Sébastien Ferenczi, Joanna Kułaga-Przymus, and Mariusz Lemańczyk, Sarnak’s conjecture: what’s new, Ergodic theory and dynamical systems in their interactions with arithmetics and combinatorics, Lecture Notes in Math., vol. 2213, Springer, Cham, 2018, pp. 163–235. MR 3821717
- H. Furstenberg, The structure of distal flows, Amer. J. Math. 85 (1963), 477–515. MR 157368, DOI 10.2307/2373137
- Harry Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1–49. MR 213508, DOI 10.1007/BF01692494
- Harry Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256. MR 498471, DOI 10.1007/BF02813304
- H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, NJ, 1981. M. B. Porter Lectures. MR 603625
- S. Glasner, Divisible properties and the Stone-Čech compactification, Canadian J. Math. 32 (1980), no. 4, 993–1007. MR 590662, DOI 10.4153/CJM-1980-077-x
- Eli Glasner, Todor Tsankov, Benjamin Weiss, and Andy Zucker, Bernoulli disjointness, Duke Math. J. 170 (2021), no. 4, 615–651. MR 4280091, DOI 10.1215/00127094-2020-0093
- S. Glasner and B. Weiss, Interpolation sets for subalgebras of $l^{\infty }(\textbf {Z})$, Israel J. Math. 44 (1983), no. 4, 345–360. MR 710239, DOI 10.1007/BF02761993
- Eli Glasner and Benjamin Weiss, Quasi-factors of zero-entropy systems, J. Amer. Math. Soc. 8 (1995), no. 3, 665–686. MR 1270579, DOI 10.1090/S0894-0347-1995-1270579-5
- John T. Griesmer, Special cases and equivalent forms of Katznelson’s problem on recurrence, Monatsh. Math. 200 (2023), no. 1, 63–79. MR 4530192, DOI 10.1007/s00605-022-01770-6
- David Grow, A class of $I_0$-sets, Colloq. Math. 53 (1987), no. 1, 111–124. MR 890847, DOI 10.4064/cm-53-1-111-124
- Frank Hahn and Yitzhak Katznelson, On the entropy of uniquely ergodic transformations, Trans. Amer. Math. Soc. 126 (1967), 335–360. MR 207959, DOI 10.1090/S0002-9947-1967-0207959-1
- S. Hartman, On interpolation by almost periodic functions, Colloq. Math. 8 (1961), 99–101. MR 126120, DOI 10.4064/cm-8-1-99-101
- S. Hartman and C. Ryll-Nardzewski, Almost periodic extensions of functions, Colloq. Math. 12 (1964), 23–39. MR 167785, DOI 10.4064/cm-12-1-23-39
- Bernard Host and Bryna Kra, Nilpotent structures in ergodic theory, Mathematical Surveys and Monographs, vol. 236, American Mathematical Society, Providence, RI, 2018. MR 3839640, DOI 10.1090/surv/236
- Bernard Host, Bryna Kra, and Alejandro Maass, Variations on topological recurrence, Monatsh. Math. 179 (2016), no. 1, 57–89. MR 3439271, DOI 10.1007/s00605-015-0765-0
- Wen Huang, Tame systems and scrambled pairs under an abelian group action, Ergodic Theory Dynam. Systems 26 (2006), no. 5, 1549–1567. MR 2266373, DOI 10.1017/S0143385706000198
- Adam Kanigowski, Mariusz Lemańczyk, and Maksym Radziwiłł, Prime number theorem for analytic skew products, Ann. of Math. (2) 199 (2024), no. 2, 591–705. MR 4713020, DOI 10.4007/annals.2024.199.2.2
- David Kerr and Hanfeng Li, Dynamical entropy in Banach spaces, Invent. Math. 162 (2005), no. 3, 649–686. MR 2198223, DOI 10.1007/s00222-005-0457-9
- David Kerr and Hanfeng Li, Independence in topological and $C^*$-dynamics, Math. Ann. 338 (2007), no. 4, 869–926. MR 2317754, DOI 10.1007/s00208-007-0097-z
- Joanna Kułaga-Przymus and Mariusz Lemańczyk, Sarnak’s conjecture from the ergodic theory point of view, Ergodic theory, Encycl. Complex. Syst. Sci., Springer, New York, [2023] ©2023, pp. 293–311. MR 4647081, DOI 10.1007/978-1-0716-2388-6_{7}35
- Kenneth Kunen and Walter Rudin, Lacunarity and the Bohr topology, Math. Proc. Cambridge Philos. Soc. 126 (1999), no. 1, 117–137. MR 1681658, DOI 10.1017/S030500419800317X
- Anh N. Le, Interpolation sets and nilsequences, Colloq. Math. 162 (2020), no. 2, 181–199. MR 4128459, DOI 10.4064/cm7937-9-2019
- Anh N. Le, Sublacunary sets and interpolation sets for nilsequences, Discrete Contin. Dyn. Syst. 42 (2022), no. 4, 1855–1871. MR 4385779, DOI 10.3934/dcds.2021175
- Zhengxing Lian and Ruxi Shi, A counter-example for polynomial version of Sarnak’s conjecture, Adv. Math. 384 (2021), Paper No. 107765, 14. MR 4246104, DOI 10.1016/j.aim.2021.107765
- Jean-François Méla, Approximation diophantienne et ensembles lacunaires, Contributions à la théorie des séries trigonométriques et à la théorie des nombres, Supplément au Bull. Soc. Math. France, Tome 97, no. 3, Soc. Math. France, Paris, 1969, pp. 26–54 (French). MR 619224, DOI 10.24033/msmf.21
- R. Pavlov, Minimal zero entropy subshifts can be unrestricted along any sparse set, arXiv:2308.08013.
- Ronnie Pavlov, Some counterexamples in topological dynamics, Ergodic Theory Dynam. Systems 28 (2008), no. 4, 1291–1322. MR 2437231, DOI 10.1017/S0143385707000508
- L. Thomas Ramsey, Fourier-Stieltjes transforms of measures with a certain continuity property, J. Functional Analysis 25 (1977), no. 3, 306–316. MR 442601, DOI 10.1016/0022-1236(77)90076-3
- C. Ryll-Nardzewski, Concerning almost periodic extensions of functions, Colloq. Math. 12 (1964), 235–237. MR 173129, DOI 10.4064/cm-12-2-235-237
- Peter Sarnak, Mobius randomness and dynamics, Not. S. Afr. Math. Soc. 43 (2012), no. 2, 89–97. MR 3014544
- S. Sidon, Ein Satz über die absolute Konvergenz von Fourierreihen, in denen sehr viele Glieder fehlen, Math. Ann. 96 (1927), no. 1, 418–419 (German). MR 1512328, DOI 10.1007/BF01209176
- S. Sidon, Verallgemeinerung eines Satzes über die absolute Konvergenz von Fourierreihen mit Lücken, Math. Ann. 97 (1927), no. 1, 675–676 (German). MR 1512382, DOI 10.1007/BF01447888
- E. Strzelecki, On a problem of interpolation by periodic and almost periodic functions, Colloq. Math. 11 (1963), 91–99. MR 160080, DOI 10.4064/cm-11-1-91-99
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108
- Benjamin Weiss, Single orbit dynamics, CBMS Regional Conference Series in Mathematics, vol. 95, American Mathematical Society, Providence, RI, 2000. MR 1727510, DOI 10.1090/cbms/095
- Yitang Zhang, Bounded gaps between primes, Ann. of Math. (2) 179 (2014), no. 3, 1121–1174. MR 3171761, DOI 10.4007/annals.2014.179.3.7
- Robert J. Zimmer, Ergodic actions with generalized discrete spectrum, Illinois J. Math. 20 (1976), no. 4, 555–588. MR 414832
- Robert J. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), no. 3, 373–409. MR 409770
Bibliographic Information
- Andreas Koutsogiannis
- Affiliation: Aristotle University of Thessaloniki, Thessaloniki, Greece
- MR Author ID: 974679
- Email: akoutsogiannis@math.auth.gr
- Anh N. Le
- Affiliation: University of Denver, Denver, Colorado
- Email: anh.n.le@du.edu
- Joel Moreira
- Affiliation: University of Warwick, Coventry CV4 7AL, United Kingdom
- MR Author ID: 1091663
- ORCID: 0000-0002-7278-1219
- Email: joel.moreira@warwick.ac.uk
- Ronnie Pavlov
- Affiliation: University of Denver, Denver, Colorado
- MR Author ID: 845553
- Email: rpavlov@du.edu
- Florian K. Richter
- Affiliation: École Polytechnique Fédérale de Lausanne (EPFL), Rte Cantonale, 1015 Lausanne, Switzerland
- MR Author ID: 1147216
- Email: f.richter@epfl.ch
- Received by editor(s): March 4, 2024
- Received by editor(s) in revised form: July 17, 2024
- Published electronically: October 17, 2024
- Additional Notes: R. Pavlov gratefully acknowledges the support of a Simons Foundation Collaboration Grant
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 1373-1400
- MSC (2020): Primary 37B05; Secondary 37B10
- DOI: https://doi.org/10.1090/tran/9300