Class number for pseudo-Anosovs
HTML articles powered by AMS MathViewer
- by François Dahmani and Mahan Mj;
- Trans. Amer. Math. Soc. 378 (2025), 1465-1482
- DOI: https://doi.org/10.1090/tran/9310
- Published electronically: December 4, 2024
- HTML | PDF | Request permission
Abstract:
Given two automorphisms of a group $G$, one is interested in knowing whether they are conjugate in the automorphism group of $G$, or in the abstract commensurator of $G$, and how these two properties may differ. When $G$ is the fundamental group of a closed orientable surface, we present a uniform finiteness theorem for the class of pseudo-Anosov automorphisms. We present an explicit example of a commensurably conjugate pair of pseudo-Anosov automorphisms of a genus $3$ surface, that are not conjugate in the mapping class group, and we also show that infinitely many pairwise non-commuting pseud-Anosov automorphisms have class number equal to one. In the appendix, we briefly survey the Latimer-MacDuffee theorem that addresses the case of automorphisms of $\mathbb {Z}^n$, with a point of view that is suited to an analogy with surface group automorphisms.References
- I. Agol, Tameness of hyperbolic 3-manifolds, arXiv:math/0405568, 2004
- Ian Agol, The virtual Haken conjecture, Doc. Math. 18 (2013), 1045–1087. With an appendix by Agol, Daniel Groves, and Jason Manning. MR 3104553
- Alex Bartel and Hendrik W. Lenstra Jr., On class groups of random number fields, Proc. Lond. Math. Soc. (3) 121 (2020), no. 4, 927–953. MR 4105790, DOI 10.1112/plms.12343
- A. Borel, Commensurability classes and volumes of hyperbolic $3$-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), no. 1, 1–33. MR 616899
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956, DOI 10.1007/978-1-4684-9327-6
- Danny Calegari and David Gabai, Shrinkwrapping and the taming of hyperbolic 3-manifolds, J. Amer. Math. Soc. 19 (2006), no. 2, 385–446. MR 2188131, DOI 10.1090/S0894-0347-05-00513-8
- Danny Calegari, Hongbin Sun, and Shicheng Wang, On fibered commensurability, Pacific J. Math. 250 (2011), no. 2, 287–317. MR 2794601, DOI 10.2140/pjm.2011.250.287
- Richard D. Canary, A covering theorem for hyperbolic $3$-manifolds and its applications, Topology 35 (1996), no. 3, 751–778. MR 1396777, DOI 10.1016/0040-9383(94)00055-7
- H. Cohen and H. W. Lenstra Jr., Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, pp. 33–62. MR 756082, DOI 10.1007/BFb0099440
- Alex Eskin and Maryam Mirzakhani, Counting closed geodesics in moduli space, J. Mod. Dyn. 5 (2011), no. 1, 71–105. MR 2787598, DOI 10.3934/jmd.2011.5.71
- Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012. MR 2850125
- Michael Gromov, Hyperbolic manifolds (according to Thurston and Jørgensen), Bourbaki Seminar, Vol. 1979/80, Lecture Notes in Math., vol. 842, Springer, Berlin, 1981, pp. 40–53. MR 636516
- D. A. Každan and G. A. Margulis, A proof of Selberg’s hypothesis, Mat. Sb. (N.S.) 75(117) (1968), 163–168 (Russian). MR 223487
- Steven P. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983), no. 2, 235–265. MR 690845, DOI 10.2307/2007076
- Jürgen Klüners and Sebastian Pauli, Computing residue class rings and Picard groups of orders, J. Algebra 292 (2005), no. 1, 47–64. MR 2166795, DOI 10.1016/j.jalgebra.2005.04.013
- J. L. Lagrange, Solution d’un problème d’arithmétique, Oeuvres de Lagrange, Tome I, Gauthier-Villars, Paris, 1867, pp. 669–731. https://archive.org/details/oeuvresdelagrang01lagr/page/668/mode/2up
- Claiborne G. Latimer and C. C. MacDuffee, A correspondence between classes of ideals and classes of matrices, Ann. of Math. (2) 34 (1933), no. 2, 313–316. MR 1503108, DOI 10.2307/1968204
- Christopher Leininger, Darren D. Long, and Alan W. Reid, Commensurators of finitely generated nonfree Kleinian groups, Algebr. Geom. Topol. 11 (2011), no. 1, 605–624. MR 2783240, DOI 10.2140/agt.2011.11.605
- Alexander Lubotzky and Dan Segal, Subgroup growth, Progress in Mathematics, vol. 212, Birkhäuser Verlag, Basel, 2003. MR 1978431, DOI 10.1007/978-3-0348-8965-0
- Stefano Marseglia, Computing the ideal class monoid of an order, J. Lond. Math. Soc. (2) 101 (2020), no. 3, 984–1007. MR 4111932, DOI 10.1112/jlms.12294
- G. D. Mostow, Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53–104. MR 236383, DOI 10.1007/BF02684590
- Hugh L. Montgomery and Peter J. Weinberger, Real quadratic fields with large class number, Math. Ann. 225 (1977), no. 2, 173–176. MR 427271, DOI 10.1007/BF01351721
- Mahan Mj, On discreteness of commensurators, Geom. Topol. 15 (2011), no. 1, 331–350. MR 2776846, DOI 10.2140/gt.2011.15.331
- Robert C. Penner, A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988), no. 1, 179–197. MR 930079, DOI 10.1090/S0002-9947-1988-0930079-9
- John Stallings, On fibering certain $3$-manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Inc., Englewood Cliffs, NJ, 1961, pp. 95–100. MR 158375
- H. M. Stark, The Gauss class-number problems, Analytic number theory, Clay Math. Proc., vol. 7, Amer. Math. Soc., Providence, RI, 2007, pp. 247–256. MR 2362205
- Daniel Studenmund, Abstract commensurators of lattices in Lie groups, Comment. Math. Helv. 90 (2015), no. 2, 287–323. MR 3351746, DOI 10.4171/CMH/354
- Olga Taussky, On a theorem of Latimer and MacDuffee, Canad. J. Math. 1 (1949), 300–302. MR 30491, DOI 10.4153/cjm-1949-026-1
- William P. Thurston, Hyperbolic structures on 3-manifolds, II: surface groups and 3-manifolds which fiber over the circle, Collected works of William P. Thurston with commentary. Vol. II. 3-manifolds, complexity and geometric group theory, Amer. Math. Soc., Providence, RI, [2022] ©2022, pp. 79–110. August 1986 preprint, January 1998 eprint. MR 4556467
- P. Zanardo and U. Zannier, The class semigroup of orders in number fields, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 3, 379–391. MR 1269926, DOI 10.1017/S0305004100072170
Bibliographic Information
- François Dahmani
- Affiliation: Institut Fourier, UMR 5582, Laboratoire de Mathématiques, Université Grenoble Alpes, CS 40700, 38058 Grenoble cedex 9, France
- MR Author ID: 714038
- ORCID: 0000-0003-3874-7436
- Email: francois.dahmani@univ-grenoble-alpes.fr
- Mahan Mj
- Affiliation: School of Mathematics, Tata Institute of Fundamental Research, Mumbai-40005, India
- MR Author ID: 606917
- ORCID: 0000-0002-1316-0906
- Email: mahan@math.tifr.res.in, mahan.mj@gmail.com
- Received by editor(s): February 17, 2023
- Received by editor(s) in revised form: October 17, 2023, and August 5, 2024
- Published electronically: December 4, 2024
- Additional Notes: This work was supported by LabEx CARMIN, ANR-10-LABX-59-01. The first author was supported by ANR-22-CE40-0004 GoFR. The second author was supported by the Department of Atomic Energy, Government of India, under project no.12-R&D-TFR-5.01-0500, by an endowment of the Infosys Foundation. and by a DST JC Bose Fellowship.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 1465-1482
- MSC (2020): Primary 57K20
- DOI: https://doi.org/10.1090/tran/9310