Long strings of consecutive composite values of polynomials
HTML articles powered by AMS MathViewer
- by Kevin Ford and Mikhail R. Gabdullin;
- Trans. Amer. Math. Soc. 378 (2025), 1261-1282
- DOI: https://doi.org/10.1090/tran/9348
- Published electronically: December 30, 2024
- HTML | PDF | Request permission
Abstract:
We show that for any polynomial $f:\mathbb {Z}\to \mathbb {Z}$ with positive leading coefficient and irreducible over $\mathbb {Q}$, if $x$ is large enough then there is a string of $(\log x)(\log \log x)^{1/835}$ consecutive integers $n\in [1,x]$ for which $f(n)$ is composite. This improves the result by Kevin Ford, Sergei Konyagin, James Maynard, Carl Pomerance, and Terence Tao [J. Eur. Math. Soc. (JEMS) 23 (2023), pp. 667–700], which has the exponent of $\log \log x$ being a constant depending on $f$ which can be exponentially small in the degree of $f$.References
- Paul T. Bateman and Roger A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers, Math. Comp. 16 (1962), 363–367. MR 148632, DOI 10.1090/S0025-5718-1962-0148632-7
- V. Bouniakowsky, Nouveaux théorèmes relatifs á la distinction des nombres premiers et á la d’ecomposition des entiers en facteurs, Mém. Acad. Sc. St. Pétersbourg 6 (1857), 305–329.
- N. Tschebotareff, Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehören, Math. Ann. 95 (1926), no. 1, 191–228 (German). MR 1512273, DOI 10.1007/BF01206606
- Alina Carmen Cojocaru and M. Ram Murty, An introduction to sieve methods and their applications, London Mathematical Society Student Texts, vol. 66, Cambridge University Press, Cambridge, 2006. MR 2200366
- Kevin Ford, Ben Green, Sergei Konyagin, James Maynard, and Terence Tao, Long gaps between primes, J. Amer. Math. Soc. 31 (2018), no. 1, 65–105. MR 3718451, DOI 10.1090/jams/876
- K. Ford, S. V. Konyagin, J. Maynard, C. Pomerance, T. Tao, Long gaps in sieved sets, J. European Math. Soc. (JEMS) 23, 667–700 (2021). Corrigendum: J. European Math. Soc. (JEMS) 25 (2023), no. 6, 2483–2485.
- P. Erdös, On the sum $\sum ^x_{k=1} d(f(k))$, J. London Math. Soc. 27 (1952), 7–15. MR 44565, DOI 10.1112/jlms/s1-27.1.7
- J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem, Algebraic number fields: $L$-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London-New York, 1977, pp. 409–464. MR 447191
- Edmund Landau, Neuer Beweis des Primzahlsatzes und Beweis des Primidealsatzes, Math. Ann. 56 (1903), no. 4, 645–670 (German). MR 1511191, DOI 10.1007/BF01444310
- I. G. Macdonald, Symmetric functions and orthogonal polynomials, University Lecture Series, vol. 12, American Mathematical Society, Providence, RI, 1998. Dean Jacqueline B. Lewis Memorial Lectures presented at Rutgers University, New Brunswick, NJ. MR 1488699, DOI 10.1090/ulect/012
- G. Pólya, Über ganzwertige ganze Funktionen, Rend. Circ. Mat. Palermo 40 (1915), 1–16.
Bibliographic Information
- Kevin Ford
- Affiliation: Department of mathematics, 1409 West Green Street, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- MR Author ID: 325647
- ORCID: 0000-0001-9650-725X
- Email: ford126@illinois.edu
- Mikhail R. Gabdullin
- Affiliation: Department of mathematics, 1409 West Green Street, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Steklov Mathematical Institute, Gubkina str., 8, Moscow 119991, Russia
- MR Author ID: 1152042
- Email: gabdullin.mikhail@yandex.ru, mikhailg@illinois.edu
- Received by editor(s): November 7, 2023
- Received by editor(s) in revised form: July 1, 2024
- Published electronically: December 30, 2024
- Additional Notes: The first author was supported by National Science Foundation grant DMS-2301264
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 1261-1282
- MSC (2020): Primary 11N35, 11N32, 11B05
- DOI: https://doi.org/10.1090/tran/9348