Generalized partial-slice monogenic functions
HTML articles powered by AMS MathViewer
- by Zhenghua Xu and Irene Sabadini;
- Trans. Amer. Math. Soc. 378 (2025), 851-883
- DOI: https://doi.org/10.1090/tran/9356
- Published electronically: December 27, 2024
- HTML | PDF | Request permission
Abstract:
The two function theories of monogenic and of slice monogenic functions have been extensively studied in the literature and were developed independently; the relations between them, e.g. via Fueter mapping and Radon transform, have been studied. The main purpose of this article is to describe a new function theory which includes both of them as special cases. This theory allows to prove nice properties such as the identity theorem, a Representation Formula, the Cauchy (and Cauchy-Pompeiu) integral formula, the maximum modulus principle, a version of the Taylor series and Laurent series expansions. As a complement, we shall also offer two approaches to these functions via generalized partial-slice functions and via global differential operators. In addition, we discuss the conformal invariance property under a proper group of Möbius transformations preserving the partial symmetry of the involved domains.References
- Lars V. Ahlfors, Möbius transformations and Clifford numbers, Differential geometry and complex analysis, Springer, Berlin, 1985, pp. 65–73. MR 780036
- Lars V. Ahlfors, Möbius transformations in $\textbf {R}^n$ expressed through $2\times 2$ matrices of Clifford numbers, Complex Variables Theory Appl. 5 (1986), no. 2-4, 215–224. MR 846490, DOI 10.1080/17476938608814142
- Daniel Alpay, Fabrizio Colombo, and Irene Sabadini, Slice hyperholomorphic Schur analysis, Operator Theory: Advances and Applications, vol. 256, Birkhäuser/Springer, Cham, 2016. MR 3585855, DOI 10.1007/978-3-319-42514-6
- Daniel Alpay, Fabrizio Colombo, and Irene Sabadini, Quaternionic de Branges spaces and characteristic operator function, SpringerBriefs in Mathematics, Springer, Cham, [2020] ©2020. MR 4292259, DOI 10.1007/978-3-030-38312-1
- F. Brackx, Richard Delanghe, and F. Sommen, Clifford analysis, Research Notes in Mathematics, vol. 76, Pitman (Advanced Publishing Program), Boston, MA, 1982. MR 697564
- Fabrizio Colombo and Jonathan Gantner, Quaternionic closed operators, fractional powers and fractional diffusion processes, Operator Theory: Advances and Applications, vol. 274, Birkhäuser/Springer, Cham, 2019. MR 3967697, DOI 10.1007/978-3-030-16409-6
- Fabrizio Colombo, Jonathan Gantner, and David P. Kimsey, Spectral theory on the S-spectrum for quaternionic operators, Operator Theory: Advances and Applications, vol. 270, Birkhäuser/Springer, Cham, 2018. MR 3887616, DOI 10.1007/978-3-030-03074-2
- Fabrizio Colombo, J. Oscar González-Cervantes, and Irene Sabadini, A nonconstant coefficients differential operator associated to slice monogenic functions, Trans. Amer. Math. Soc. 365 (2013), no. 1, 303–318. MR 2984060, DOI 10.1090/S0002-9947-2012-05689-3
- Fabrizio Colombo, Rolf Sören Kraußhar, and Irene Sabadini, Symmetries of slice monogenic functions, J. Noncommut. Geom. 14 (2020), no. 3, 1075–1106. MR 4170649, DOI 10.4171/jncg/387
- F. Colombo, R. Lávička, I. Sabadini, and V. Souček, The Radon transform between monogenic and generalized slice monogenic functions, Math. Ann. 363 (2015), no. 3-4, 733–752. MR 3412341, DOI 10.1007/s00208-015-1182-3
- Fabrizio Colombo, Irene Sabadini, Franciscus Sommen, and Daniele C. Struppa, Analysis of Dirac systems and computational algebra, Progress in Mathematical Physics, vol. 39, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2089988, DOI 10.1007/978-0-8176-8166-1
- Fabrizio Colombo, Irene Sabadini, and Daniele C. Struppa, Slice monogenic functions, Israel J. Math. 171 (2009), 385–403. MR 2520116, DOI 10.1007/s11856-009-0055-4
- Fabrizio Colombo, Irene Sabadini, and Daniele C. Struppa, Noncommutative functional calculus, Progress in Mathematics, vol. 289, Birkhäuser/Springer Basel AG, Basel, 2011. Theory and applications of slice hyperholomorphic functions. MR 2752913, DOI 10.1007/978-3-0348-0110-2
- Fabrizio Colombo, Irene Sabadini, and Daniele C. Struppa, Entire slice regular functions, SpringerBriefs in Mathematics, Springer, Cham, 2016. MR 3585395, DOI 10.1007/978-3-319-49265-0
- Fabrizio Colombo, Irene Sabadini, and Daniele C. Struppa, Michele Sce’s works in hypercomplex analysis—a translation with commentaries, Birkhäuser/Springer, Cham, [2020] ©2020. MR 4240465, DOI 10.1007/978-3-030-50216-4
- Fabrizio Colombo and Franciscus Sommen, Distributions and the global operator of slice monogenic functions, Complex Anal. Oper. Theory 8 (2014), no. 6, 1257–1268. MR 3233977, DOI 10.1007/s11785-013-0322-6
- R. Delanghe, F. Sommen, and V. Souček, Clifford algebra and spinor-valued functions, Mathematics and its Applications, vol. 53, Kluwer Academic Publishers Group, Dordrecht, 1992. A function theory for the Dirac operator; Related REDUCE software by F. Brackx and D. Constales; With 1 IBM-PC floppy disk (3.5 inch). MR 1169463, DOI 10.1007/978-94-011-2922-0
- C. Ding and Z. Xu, Invariance of iterated global differential operator for slice monogenic functions, Comput. Methods Funct. Theory, \PrintDOI{10.1007/s40315-024-00551-6}, online, 2024.
- Baohua Dong and Tao Qian, Uniform generalizations of Fueter’s theorem, Ann. Mat. Pura Appl. (4) 200 (2021), no. 1, 229–251. MR 4208089, DOI 10.1007/s10231-020-00993-4
- J. Elstrodt, F. Grunewald, and J. Mennicke, Vahlen’s group of Clifford matrices and spin-groups, Math. Z. 196 (1987), no. 3, 369–390. MR 913663, DOI 10.1007/BF01200359
- Sirkka-Liisa Eriksson-Bique and Heinz Leutwiler, Hypermonogenic functions, Clifford algebras and their applications in mathematical physics, Vol. 2 (Ixtapa, 1999) Progr. Phys., vol. 19, Birkhäuser Boston, Boston, MA, 2000, pp. 287–302. MR 1771376
- Run Fueter, Die Funktionentheorie der Differentialgleichungen $\Theta u=0$ und $\Theta \Theta u=0$ mit vier reellen Variablen, Comment. Math. Helv. 7 (1934), no. 1, 307–330 (German). MR 1509515, DOI 10.1007/BF01292723
- Graziano Gentili, Caterina Stoppato, and Daniele C. Struppa, Regular functions of a quaternionic variable, Springer Monographs in Mathematics, Springer, Heidelberg, 2013. MR 3013643, DOI 10.1007/978-3-642-33871-7
- Graziano Gentili and Daniele C. Struppa, A new approach to Cullen-regular functions of a quaternionic variable, C. R. Math. Acad. Sci. Paris 342 (2006), no. 10, 741–744 (English, with English and French summaries). MR 2227751, DOI 10.1016/j.crma.2006.03.015
- Graziano Gentili and Daniele C. Struppa, A new theory of regular functions of a quaternionic variable, Adv. Math. 216 (2007), no. 1, 279–301. MR 2353257, DOI 10.1016/j.aim.2007.05.010
- Graziano Gentili and Daniele C. Struppa, Regular functions on the space of Cayley numbers, Rocky Mountain J. Math. 40 (2010), no. 1, 225–241. MR 2607115, DOI 10.1216/RMJ-2010-40-1-225
- R. Ghiloni and A. Perotti, Slice regular functions on real alternative algebras, Adv. Math. 226 (2011), no. 2, 1662–1691. MR 2737796, DOI 10.1016/j.aim.2010.08.015
- Riccardo Ghiloni and Alessandro Perotti, Global differential equations for slice regular functions, Math. Nachr. 287 (2014), no. 5-6, 561–573. MR 3193936, DOI 10.1002/mana.201200318
- John E. Gilbert and Margaret A. M. Murray, Clifford algebras and Dirac operators in harmonic analysis, Cambridge Studies in Advanced Mathematics, vol. 26, Cambridge University Press, Cambridge, 1991. MR 1130821, DOI 10.1017/CBO9780511611582
- K. Gürlebeck, K. Habetha, and W. Sprößig, Holomorphic functions in the plane and $n$-dimensional space, Birkhäuser Verlag, Basel, 2008.
- Guy Laville and Ivan Ramadanoff, Holomorphic Cliffordian functions, Adv. Appl. Clifford Algebras 8 (1998), no. 2, 323–340. MR 1697976, DOI 10.1007/BF03043103
- Heinz Leutwiler, Modified Clifford analysis, Complex Variables Theory Appl. 17 (1992), no. 3-4, 153–171. MR 1147046, DOI 10.1080/17476939208814508
- Ming Jin, Guangbin Ren, and Irene Sabadini, Slice Dirac operator over octonions, Israel J. Math. 240 (2020), no. 1, 315–344. MR 4193136, DOI 10.1007/s11856-020-2067-z
- Gr. C. Moisil, Sur les quaternions monogènes, Bull. Sci. Math. 55 (1931), 168–174.
- Alessandro Perotti, Slice regularity and harmonicity on Clifford algebras, Topics in Clifford analysis—special volume in honor of Wolfgang Sprößig, Trends Math., Birkhäuser/Springer, Cham, [2019] ©2019, pp. 53–73. MR 4191450, DOI 10.1007/978-3-030-23854-4_{3}
- Tao Qian, Generalization of Fueter’s result to $\textbf {R}^{n+1}$, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 8 (1997), no. 2, 111–117 (English, with English and Italian summaries). MR 1485323
- Guangbin Ren and Zhenghua Xu, Schwarz’s lemma for slice Clifford analysis, Adv. Appl. Clifford Algebr. 25 (2015), no. 4, 965–976. MR 3413614, DOI 10.1007/s00006-015-0534-0
- John Ryan, Conformal Clifford manifolds arising in Clifford analysis, Proc. Roy. Irish Acad. Sect. A 85 (1985), no. 1, 1–23. MR 821418
- Caterina Stoppato, A new series expansion for slice regular functions, Adv. Math. 231 (2012), no. 3-4, 1401–1416. MR 2964609, DOI 10.1016/j.aim.2012.05.023
- A. Sudbery, Quaternionic analysis, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 2, 199–224. MR 516081, DOI 10.1017/S0305004100055638
- James A. Ward, A theory of analytic functions in linear associative algebras, Duke Math. J. 7 (1940), 233–248. MR 2859
Bibliographic Information
- Zhenghua Xu
- Affiliation: School of Mathematics, Hefei University of Technology, Hefei 230601, People’s Republic of China
- Email: zhxu@hfut.edu.cn
- Irene Sabadini
- Affiliation: Politecnico di Milano, Dipartimento di Matematica, Via E. Bonardi, 9, 20133 Milano, Italy
- MR Author ID: 361222
- ORCID: 0000-0002-9930-4308
- Email: irene.sabadini@polimi.it
- Received by editor(s): November 25, 2023
- Published electronically: December 27, 2024
- Additional Notes: This work was partially supported by the Anhui Provincial Natural Science Foundation (No. 2308085MA04) and the National Natural Science Foundation of China (No. 11801125).
This work was partially supported by PRIN 2022 Real and Complex Manifolds: Geometry and Holomorphic Dynamics. The author is member of GNSAGA of INdAM - © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 851-883
- MSC (2020): Primary 30G35; Secondary 32A30, 32A26
- DOI: https://doi.org/10.1090/tran/9356