The spectrum of Artin motives
HTML articles powered by AMS MathViewer
- by Paul Balmer and Martin Gallauer;
- Trans. Amer. Math. Soc. 378 (2025), 1733-1754
- DOI: https://doi.org/10.1090/tran/9306
- Published electronically: October 31, 2024
- HTML | PDF | Request permission
Abstract:
We analyze the tt-geometry of derived Artin motives, via modular representation theory of profinite groups. To illustrate our methods, we discuss Artin motives over a finite field, in which case we also prove stratification.References
- Paul Balmer, The spectrum of prime ideals in tensor triangulated categories, J. Reine Angew. Math. 588 (2005), 149–168. MR 2196732, DOI 10.1515/crll.2005.2005.588.149
- Paul Balmer, Tensor triangular geometry, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi, 2010, pp. 85–112. MR 2827786
- Paul Balmer, On the surjectivity of the map of spectra associated to a tensor-triangulated functor, Bull. Lond. Math. Soc. 50 (2018), no. 3, 487–495. MR 3829735, DOI 10.1112/blms.12158
- S. Balchin, D. Barnes, and T. Barthel, Profinite equivariant spectra and their tensor-triangular geometry, Preprint, arXiv:2401.01878, 2024.
- Tobias Barthel, Natàlia Castellana, Drew Heard, Niko Naumann, Luca Pol, and Beren Sanders, Descent in tensor triangular geometry, Triangulated categories in representation theory and beyond—the Abel Symposium 2022, Abel Symp., vol. 17, Springer, Cham, [2024] ©2024, pp. 1–56. MR 4786501, DOI 10.1007/978-3-031-57789-5_{1}
- T. Barthel, N. Castellana, D. Heard, and B. Sanders, Cosupport in tensor triangular geometry, Preprint, arXiv:2303.13480, 2023.
- Paul Balmer and Giordano Favi, Generalized tensor idempotents and the telescope conjecture, Proc. Lond. Math. Soc. (3) 102 (2011), no. 6, 1161–1185. MR 2806103, DOI 10.1112/plms/pdq050
- Paul Balmer and Martin Gallauer, Permutation modules and cohomological singularity, Comment. Math. Helv. 97 (2022), no. 3, 413–430. MR 4468990, DOI 10.4171/cmh/534
- Paul Balmer and Martin Gallauer, Three real Artin-Tate motives, Adv. Math. 406 (2022), Paper No. 108535, 68. MR 4445121, DOI 10.1016/j.aim.2022.108535
- Paul Balmer and Martin Gallauer, Finite permutation resolutions, Duke Math. J. 172 (2023), no. 2, 201–229. MR 4541331, DOI 10.1215/00127094-2022-0041
- Paul Balmer and Martin Gallauer, Permutation modules, Mackey functors, and Artin motives, Representations of algebras and related structures, EMS Ser. Congr. Rep., EMS Press, Berlin, [2023] ©2023, pp. 37–75. MR 4693637
- Paul Balmer and Martin Gallauer, The geometry of permutation modules, Preprint available on authors’ webpages, 2023.
- Tobias Barthel, Drew Heard, and Beren Sanders, Stratification in tensor triangular geometry with applications to spectral Mackey functors, Camb. J. Math. 11 (2023), no. 4, 829–915. MR 4650265, DOI 10.4310/cjm.2023.v11.n4.a2
- David J. Benson, Srikanth B. Iyengar, and Henning Krause, Stratifying modular representations of finite groups, Ann. of Math. (2) 174 (2011), no. 3, 1643–1684. MR 2846489, DOI 10.4007/annals.2011.174.3.6
- Paul Balmer, Henning Krause, and Greg Stevenson, Tensor-triangular fields: ruminations, Selecta Math. (N.S.) 25 (2019), no. 1, Paper No. 13, 36. MR 3911737, DOI 10.1007/s00029-019-0454-2
- Andreas W. M. Dress, Notes on the theory of representations of finite groups. Part I: The Burnside ring of a finite group and some AGN-applications, Universität Bielefeld, Fakultät für Mathematik, Bielefeld, 1971. With the aid of lecture notes, taken by Manfred Küchler. MR 360771
- Max Dickmann, Niels Schwartz, and Marcus Tressl, Spectral spaces, New Mathematical Monographs, vol. 35, Cambridge University Press, Cambridge, 2019. MR 3929704, DOI 10.1017/9781316543870
- Peng Du and Alexander Vishik, On the Balmer spectrum of Morel-Voevodsky category, Preprint, arXiv:2309.09077, 2023.
- Martin Gallauer, Tensor triangular geometry of filtered modules, Algebra Number Theory 12 (2018), no. 8, 1975–2003. MR 3892970, DOI 10.2140/ant.2018.12.1975
- Martin Gallauer, tt-geometry of Tate motives over algebraically closed fields, Compos. Math. 155 (2019), no. 10, 1888–1923. MR 4010428, DOI 10.1112/s0010437x19007528
- Martin Gallauer, A note on Tannakian categories and mixed motives, Bull. Lond. Math. Soc. 53 (2021), no. 1, 119–129. MR 4224517, DOI 10.1112/blms.12405
- Wulf-Dieter Geyer, Unendliche algebraische Zahlkörper, über denen jede Gleichung auflösbar von beschränkter Stufe ist, J. Number Theory 1 (1969), 346–374 (German). MR 282946, DOI 10.1016/0022-314X(69)90050-X
- Jeremiah Heller and Kyle M. Ormsby, Primes and fields in stable motivic homotopy theory, Geom. Topol. 22 (2018), no. 4, 2187–2218. MR 3784519, DOI 10.2140/gt.2018.22.2187
- Henning Krause, Decomposing thick subcategories of the stable module category, Math. Ann. 313 (1999), no. 1, 95–108. MR 1666825, DOI 10.1007/s002080050252
- Henning Krause, The stable derived category of a Noetherian scheme, Compos. Math. 141 (2005), no. 5, 1128–1162. MR 2157133, DOI 10.1112/S0010437X05001375
- Fabien Morel and Vladimir Voevodsky, $\textbf {A}^1$-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999), 45–143 (2001). MR 1813224, DOI 10.1007/BF02698831
- Tobias J. Peter, Prime ideals of mixed Artin-Tate motives, J. K-Theory 11 (2013), no. 2, 331–349. MR 3061000, DOI 10.1017/is013001031jkt215
- Luis Ribes and Pavel Zalesskii, Profinite groups, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 40, Springer-Verlag, Berlin, 2010. MR 2599132, DOI 10.1007/978-3-642-01642-4
- Alexander Vishik, Isotropic and numerical equivalence for Chow groups and Morava K-theories, Invent. Math. 237 (2024), no. 2, 779–808. MR 4768634, DOI 10.1007/s00222-024-01267-z
- Vladimir Voevodsky, Triangulated categories of motives over a field, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 188–238. MR 1764202
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
Bibliographic Information
- Paul Balmer
- Affiliation: UCLA Department, Los Angeles, California 90095
- MR Author ID: 652084
- ORCID: 0000-0003-1015-9579
- Email: balmer@math.ucla.edu
- Martin Gallauer
- Affiliation: Warwick Mathematics Institute, Coventry CV4 7AL, United Kingdom
- MR Author ID: 1067661
- ORCID: 0000-0003-2539-0511
- Email: martin.gallauer@warwick.ac.uk
- Received by editor(s): January 10, 2024
- Received by editor(s) in revised form: August 20, 2024
- Published electronically: October 31, 2024
- Additional Notes: The first author was supported by NSF grant DMS-2153758. The authors thank the Hausdorff Institute for Mathematics in Bonn for its hospitality during the preparation of this paper. For the purpose of open access, the authors have applied a Creative Commons Attribution (CC-BY) licence to any Author Accepted Manuscript version arising from this submission.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 1733-1754
- MSC (2020): Primary 14F42, 20C20, 18F99, 18G90
- DOI: https://doi.org/10.1090/tran/9306