On regularity of $\overline \partial$-solutions on $a_q$ domains with $C^2$ boundary in complex manifolds
HTML articles powered by AMS MathViewer
- by Xianghong Gong;
- Trans. Amer. Math. Soc. 378 (2025), 1771-1829
- DOI: https://doi.org/10.1090/tran/9315
- Published electronically: October 31, 2024
- HTML | PDF | Request permission
Abstract:
We study regularity of solutions $u$ to $\overline \partial u=f$ on a relatively compact $C^2$ domain $D$ in a complex manifold of dimension $n$, where $f$ is a $(0,q)$ form. Assume that there are either $(q+1)$ negative or $(n-q)$ positive Levi eigenvalues at each point of boundary $\partial D$. Under the necessary condition that a locally $L^2$ solution exists on the domain, we show the existence of the solutions on the closure of the domain that gain $1/2$ derivative when $q=1$ and $f$ is in the Hölder–Zygmund space $\Lambda ^r( D)$ with $r>1$. For $q>1$, the same regularity for the solutions is achieved when $\partial D$ is either sufficiently smooth or of $(n-q)$ positive Levi eigenvalues everywhere on $\partial D$.References
- Aldo Andreotti and Edoardo Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 81–130. MR 175148, DOI 10.1007/BF02684398
- Hajer Bahouri, Jean-Yves Chemin, and Raphaël Danchin, Fourier analysis and nonlinear partial differential equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343, Springer, Heidelberg, 2011. MR 2768550, DOI 10.1007/978-3-642-16830-7
- Luca Baracco and Giuseppe Zampieri, Regularity at the boundary for $\overline \partial$ on $Q$-pseudoconvex domains, J. Anal. Math. 95 (2005), 45–61. MR 2145559, DOI 10.1007/BF02791496
- Luca Baracco and Giuseppe Zampieri, Boundary regularity for $\overline \partial$ on $q$-pseudoconvex wedges of $\Bbb C^N$, J. Math. Anal. Appl. 313 (2006), no. 1, 262–272. MR 2178735, DOI 10.1016/j.jmaa.2005.03.091
- Moulay-Youssef Barkatou, $\scr C^k$ estimates for $\overline \partial$ on $q$-convex wedges, Math. Z. 239 (2002), no. 2, 335–352. MR 1888228, DOI 10.1007/s002090100299
- Moulay-Youssef Barkatou and Shaban Khidr, Global solution with $\scr C^k$-estimates for $\overline \partial$-equation on $q$-convex intersections, Math. Nachr. 284 (2011), no. 16, 2024–2031. MR 2844676, DOI 10.1002/mana.200910063
- Richard Beals, Peter C. Greiner, and Nancy K. Stanton, $L^p$ and Lipschitz estimates for the $\overline \partial$-equation and the $\overline \partial$-Neumann problem, Math. Ann. 277 (1987), no. 2, 185–196. MR 886418, DOI 10.1007/BF01457358
- O.V. Besov, V.P. Il′in, and S.M. Nikol′skiĭ, Integral representations of functions and imbedding theorems, Vol. II (Mitchell H. Taibleson, ed.), Scripta Series in Mathematics, V. H. Winston & Sons, Washington, DC; Halsted Press [John Wiley & Sons], New York-Toronto-London, 1979.
- Paul L. Butzer and Hubert Berens, Semi-groups of operators and approximation, Die Grundlehren der mathematischen Wissenschaften, Band 145, Springer-Verlag New York, Inc., New York, 1967. MR 230022, DOI 10.1007/978-3-642-46066-1
- So-Chin Chen and Mei-Chi Shaw, Partial differential equations in several complex variables, AMS/IP Studies in Advanced Mathematics, vol. 19, American Mathematical Society, Providence, RI; International Press, Boston, MA, 2001. MR 1800297, DOI 10.1090/amsip/019
- Graziano Crasta and Annalisa Malusa, The distance function from the boundary in a Minkowski space, Trans. Amer. Math. Soc. 359 (2007), no. 12, 5725–5759. MR 2336304, DOI 10.1090/S0002-9947-07-04260-2
- Manfredo Perdigão do Carmo, Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty. MR 1138207, DOI 10.1007/978-1-4757-2201-7
- Sophie Dispa, Intrinsic characterizations of Besov spaces on Lipschitz domains, Math. Nachr. 260 (2003), 21–33. MR 2017700, DOI 10.1002/mana.200310101
- Alain Dufresnoy, Sur l’opérateur $d^{\prime \prime }$ et les fonctions différentiables au sens de Whitney, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 1, xvi, 229–238 (French, with English summary). MR 526786, DOI 10.5802/aif.736
- Lawrence C. Evans, Partial differential equations, 2nd ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010. MR 2597943, DOI 10.1090/gsm/019
- G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Annals of Mathematics Studies, No. 75, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1972. MR 461588
- C. Gan and X. Gong, Global Newlander-Nirenberg theorem for domains with $C^2$ boundary, Michigan J. Math 74 (2023), no. 2, 1–47., DOI 10.1307/mmj/20216084
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364, DOI 10.1007/978-3-642-61798-0
- Xianghong Gong, Hölder estimates for homotopy operators on strictly pseudoconvex domains with $C^2$ boundary, Math. Ann. 374 (2019), no. 1-2, 841–880. MR 3961327, DOI 10.1007/s00208-018-1693-9
- Xianghong Gong and Kang-Tae Kim, The $\overline {\partial }$-equation on variable strictly pseudoconvex domains, Math. Z. 290 (2018), no. 1-2, 111–144. MR 3848426, DOI 10.1007/s00209-017-2011-z
- Xianghong Gong and Loredana Lanzani, Regularity of a $\overline \partial$-solution operator for strongly $\bf C$-linearly convex domains with minimal smoothness, J. Geom. Anal. 31 (2021), no. 7, 6796–6818. MR 4289246, DOI 10.1007/s12220-020-00443-w
- Xianghong Gong and Sidney M. Webster, Regularity for the CR vector bundle problem II, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10 (2011), no. 1, 129–191. MR 2829316
- Loukas Grafakos, Modern Fourier analysis, 3rd ed., Graduate Texts in Mathematics, vol. 250, Springer, New York, 2014. MR 3243741, DOI 10.1007/978-1-4939-1230-8
- Hans Grauert and Ingo Lieb, Das Ramirezsche Integral und die Lösung der Gleichung $\bar \partial f=\alpha$ im Bereich der beschränkten Formen, Rice Univ. Stud. 56 (1970), no. 2, 29–50 (1971) (German). MR 273057
- Robert E. Greene and Steven G. Krantz, Deformation of complex structures, estimates for the $\bar \partial$ equation, and stability of the Bergman kernel, Adv. in Math. 43 (1982), no. 1, 1–86. MR 644667, DOI 10.1016/0001-8708(82)90028-7
- P. C. Greiner and E. M. Stein, Estimates for the $\overline \partial$-Neumann problem, Mathematical Notes, No. 19, Princeton University Press, Princeton, NJ, 1977. MR 499319
- Phillip S. Harrington, Sobolev estimates for the Cauchy-Riemann complex on $C^1$ pseudoconvex domains, Math. Z. 262 (2009), no. 1, 199–217. MR 2491606, DOI 10.1007/s00209-008-0369-7
- Gennadi Henkin and Jürgen Leiterer, Theory of functions on complex manifolds, Monographs in Mathematics, vol. 79, Birkhäuser Verlag, Basel, 1984. MR 774049
- Gennadi M. Henkin and Jürgen Leiterer, Andreotti-Grauert theory by integral formulas, Progress in Mathematics, vol. 74, Birkhäuser Boston, Inc., Boston, MA, 1988. MR 986248, DOI 10.1007/978-1-4899-6724-4
- A. V. Romanov and G. M. Henkin, Exact Hölder estimates of the solutions of the $\bar \delta$-equation, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1171–1183 (Russian). MR 293121
- Lars Hörmander, $L^{2}$ estimates and existence theorems for the $\bar \partial$ operator, Acta Math. 113 (1965), 89–152. MR 179443, DOI 10.1007/BF02391775
- Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639
- Michael Hortmann, Über die Lösbarkeit der $\bar \partial$-Gleichung auf Ringgebieten mit Hilfe von $L^{p}$-, ${\cal C}^{k}$- und ${\cal D}$-stetigen Integraloperatoren, Math. Ann. 223 (1976), no. 2, 139–156 (German). MR 422688, DOI 10.1007/BF01360878
- Michael Hortmann, Globale holomorphe Kerne zur Lösung der Cauchy-Riemannschen Differentialgleichungen, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) Ann. of Math. Stud., No. 100, Princeton Univ. Press, Princeton, NJ, 1981, pp. 199–226 (German, with English summary). MR 627759
- Norberto Kerzman, Hölder and $L^{p}$ estimates for solutions of $\bar \partial u=f$ in strongly pseudoconvex domains, Comm. Pure Appl. Math. 24 (1971), 301–379. MR 281944, DOI 10.1002/cpa.3160240303
- Kunihiko Kodaira, Complex manifolds and deformation of complex structures, Reprint of the 1986 English edition, Classics in Mathematics, Springer-Verlag, Berlin, 2005. Translated from the 1981 Japanese original by Kazuo Akao. MR 2109686, DOI 10.1007/b138372
- J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds. I, Ann. of Math. (2) 78 (1963), 112–148. MR 153030, DOI 10.2307/1970506
- J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds. II, Ann. of Math. (2) 79 (1964), 450–472. MR 208200, DOI 10.2307/1970404
- J. J. Kohn, Global regularity for $\bar \partial$ on weakly pseudo-convex manifolds, Trans. Amer. Math. Soc. 181 (1973), 273–292. MR 344703, DOI 10.1090/S0002-9947-1973-0344703-4
- J. J. Kohn and Hugo Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math. (2) 81 (1965), 451–472. MR 177135, DOI 10.2307/1970624
- Steven G. Krantz and Harold R. Parks, Distance to $C^{k}$ hypersurfaces, J. Differential Equations 40 (1981), no. 1, 116–120. MR 614221, DOI 10.1016/0022-0396(81)90013-9
- Christine Laurent-Thiébaut and Jürgen Leiterer, The Andreotti-Vesentini separation theorem with $C^k$ estimates and extension of CR-forms, Several complex variables (Stockholm, 1987/1988) Math. Notes, vol. 38, Princeton Univ. Press, Princeton, NJ, 1993, pp. 416–439. MR 1207871
- C. Laurent-Thiébaut and J. Leiterer, The Andreotti-Vesentini separation theorem and global homotopy representation, Math. Z. 227 (1998), no. 4, 711–727. MR 1621967, DOI 10.1007/PL00004401
- Yanyan Li and Louis Nirenberg, Regularity of the distance function to the boundary, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 29 (2005), 257–264. MR 2305073
- Ingo Lieb and Joachim Michel, The Cauchy-Riemann complex, Aspects of Mathematics, E34, Friedr. Vieweg & Sohn, Braunschweig, 2002. Integral formulae and Neumann problem. MR 1900133, DOI 10.1007/978-3-322-91608-2
- Ingo Lieb and R. Michael Range, Lösungsoperatoren für den Cauchy-Riemann-Komplex mit ${\cal C}^{k}$-Abschätzungen, Math. Ann. 253 (1980), no. 2, 145–164 (German). MR 597825, DOI 10.1007/BF01578911
- Joachim Michel, Randregularität des $\overline \partial$-Problems für stückweise streng pseudokonvexe Gebiete in $\textbf {C}^n$, Math. Ann. 280 (1988), no. 1, 45–68 (German). MR 928297, DOI 10.1007/BF01474180
- Joachim Michel and Alessandro Perotti, $C^k$-regularity for the $\overline \partial$-equation on strictly pseudoconvex domains with piecewise smooth boundaries, Math. Z. 203 (1990), no. 3, 415–427. MR 1038709, DOI 10.1007/BF02570747
- Joachim Michel and Mei-Chi Shaw, The $\overline \partial$ problem on domains with piecewise smooth boundaries with applications, Trans. Amer. Math. Soc. 351 (1999), no. 11, 4365–4380. MR 1675218, DOI 10.1090/S0002-9947-99-02519-2
- Vincent Michel, Sur la régularité $C^\infty$ du $\overline \partial$ au bord d’un domaine de $\mathbf C^n$ dont la forme de Levi a exactement $s$ valeurs propres strictement négatives, Math. Ann. 295 (1993), no. 1, 135–161 (French). MR 1198845, DOI 10.1007/BF01444880
- Charles B. Morrey Jr., The analytic embedding of abstract real-analytic manifolds, Ann. of Math. (2) 68 (1958), 159–201. MR 99060, DOI 10.2307/1970048
- Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR 202511, DOI 10.1007/978-3-540-69952-1
- Alexander Nagel and Jean-Pierre Rosay, Nonexistence of homotopy formula for $(0,1)$ forms on hypersurfaces in $\textbf {C}^3$, Duke Math. J. 58 (1989), no. 3, 823–827. MR 1016447, DOI 10.1215/S0012-7094-89-05838-9
- Peter L. Polyakov, Versal embeddings of compact 3-pseudoconcave CR submanifolds, Math. Z. 248 (2004), no. 2, 267–312. MR 2088929, DOI 10.1007/s00209-004-0598-3
- R. Michael Range and Yum-Tong Siu, Uniform estimates for the $\bar \partial$-equation on domains with piecewise smooth strictly pseudoconvex boundaries, Math. Ann. 206 (1973), 325–354. MR 338450, DOI 10.1007/BF01355986
- Hélène Ricard, Estimations $\scr C^k$ pour l’opérateur de Cauchy-Riemann sur des domaines à coins $q$-convexes et $q$-concaves, Math. Z. 244 (2003), no. 2, 349–398 (French). MR 1992543, DOI 10.1007/s00209-003-0504-4
- Walter Rudin, Principles of mathematical analysis, 3rd ed., International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976. MR 385023
- Vyacheslav S. Rychkov, On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains, J. London Math. Soc. (2) 60 (1999), no. 1, 237–257. MR 1721827, DOI 10.1112/S0024610799007723
- Ziming Shi, Weighted Sobolev $L^p$ estimates for homotopy operators on strictly pseudoconvex domains with $C^2$ boundary, J. Geom. Anal. 31 (2021), no. 5, 4398–4446. MR 4244873, DOI 10.1007/s12220-020-00438-7
- Ziming Shi and Liding Yao, A solution operator for the $\overline \partial$ equation in Sobolev spaces of negative index, Trans. Amer. Math. Soc. 377 (2024), no. 2, 1111–1139. MR 4688544, DOI 10.1090/tran/9066
- Z. Shi and L. Yao, Sobolev $\frac {1}{2}$ estimates for $\overline {\partial }$ equations on strictly pseudoconvex domains with $C^2$ boundary, arXiv:2107.08913 (2021).
- Ziming Shi and Liding Yao, New estimates of Rychkov’s universal extension operator for Lipschitz domains and some applications, Math. Nachr. 297 (2024), no. 4, 1407–1443. MR 4734977, DOI 10.1002/mana.202300047
- Yum Tong Siu, The $\bar \partial$ problem with uniform bounds on derivatives, Math. Ann. 207 (1974), 163–176. MR 330515, DOI 10.1007/BF01362154
- Joel Spruck, Interior gradient estimates and existence theorems for constant mean curvature graphs in $M^n\times \mathbf R$, Pure Appl. Math. Q. 3 (2007), no. 3, Special Issue: In honor of Leon Simon., 785–800. MR 2351645, DOI 10.4310/PAMQ.2007.v3.n3.a6
- Hans Triebel, Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhäuser Verlag, Basel, 1983. MR 781540, DOI 10.1007/978-3-0346-0416-1
- S. M. Webster, A new proof of the Newlander-Nirenberg theorem, Math. Z. 201 (1989), no. 3, 303–316. MR 999729, DOI 10.1007/BF01214897
- Sidney Webster, On the proof of Kuranishi’s embedding theorem, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), no. 3, 183–207 (English, with French summary). MR 995504, DOI 10.1016/s0294-1449(16)30322-5
- Liding Yao, Sobolev and Hölder estimates for homotopy operators of the $\overline {\partial }$-equation on convex domains of finite multitype, J. Math. Anal. Appl. 538 (2024), no. 2, Paper No. 128238, 41. MR 4739361, DOI 10.1016/j.jmaa.2024.128238
- Seongan Lim Yie, Solutions of Cauchy-Riemann equations on pseudoconvex domain with nonsmooth boundary, ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.)–Purdue University. MR 2693230
- Giuseppe Zampieri, $q$-pseudoconvexity and regularity at the boundary for solutions of the $\overline \partial$-problem, Compositio Math. 121 (2000), no. 2, 155–162. MR 1757879, DOI 10.1023/A:1001811318865
- Giuseppe Zampieri, Solvability of the $\overline \partial$ problem with $C^\infty$ regularity up to the boundary on wedges of $\textbf {C}^N$, Israel J. Math. 115 (2000), 321–331. MR 1749685, DOI 10.1007/BF02810593
Bibliographic Information
- Xianghong Gong
- Affiliation: Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin 53706
- MR Author ID: 029815
- ORCID: 0000-0002-7065-9412
- Email: gong@math.wisc.edu
- Received by editor(s): October 16, 2023
- Received by editor(s) in revised form: March 20, 2024, April 25, 2024, June 8, 2024, August 18, 2024, and August 27, 2024
- Published electronically: October 31, 2024
- Additional Notes: The author was partially supported by Simons Foundation grant (award number: 505027) and NSF grant DMS-2054989
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 1771-1829
- MSC (2020): Primary 32F10, 32A26, 32W05
- DOI: https://doi.org/10.1090/tran/9315