Tubes in complex hyperbolic manifolds
HTML articles powered by AMS MathViewer
- by Ara Basmajian and Youngju Kim;
- Trans. Amer. Math. Soc. 378 (2025), 2031-2060
- DOI: https://doi.org/10.1090/tran/9319
- Published electronically: November 6, 2024
- HTML | PDF | Request permission
Abstract:
We prove a tubular neighborhood theorem for an embedded complex geodesic in a complex hyperbolic 2-manifold where the width of the tube depends only on the Euler characteristic $\chi$ of the embedded complex geodesic. We give an explicit estimate for this width. We supply two applications of the tubular neighborhood theorem. The first is a lower volume bound for such manifolds. The second is an upper bound on the first eigenvalue of the Laplacian in terms of the geometry of the manifold. Finally, we prove a geometric combination theorem for two $\mathbb {C}$-Fuchsian subgroups of $\operatorname {PU}(2,1)$. Using this combination theorem, we show that the optimal width size of a tube about an embedded complex geodesic is asymptotically bounded between $\frac {1}{|\chi |}$ and $\frac {1}{\sqrt {|\chi |}}$.References
- Uri Bader, David Fisher, Nicholas Miller, and Matthew Stover, Arithmeticity, superrigidity and totally geodesic submanifolds of complex hyperbolic manifolds, Invent. Math. 233 (2023), no. 1, 169–222. MR 4601998, DOI 10.1007/s00222-023-01186-5
- Ara Basmajian, Constructing pairs of pants, Ann. Acad. Sci. Fenn. Ser. A I Math. 15 (1990), no. 1, 65–74. MR 1050782, DOI 10.5186/aasfm.1990.1505
- Ara Basmajian, Generalizing the hyperbolic collar lemma, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 154–158. MR 1145576, DOI 10.1090/S0273-0979-1992-00298-7
- Ara Basmajian, The stable neighborhood theorem and lengths of closed geodesics, Proc. Amer. Math. Soc. 119 (1993), no. 1, 217–224. MR 1152271, DOI 10.1090/S0002-9939-1993-1152271-0
- Ara Basmajian, Tubular neighborhoods of totally geodesic hypersurfaces in hyperbolic manifolds, Invent. Math. 117 (1994), no. 2, 207–225. MR 1273264, DOI 10.1007/BF01232240
- Ara Basmajian and Robert Miner, Discrete subgroups of complex hyperbolic motions, Invent. Math. 131 (1998), no. 1, 85–136. MR 1489895, DOI 10.1007/s002220050198
- A. Basmajian, J. Brisson, A. Hassannezhad, and A. Metrás, Tubes and Steklov eigenvalues in negatively curved manifolds, arXiv.
- Ara Basmajian and Scott A. Wolpert, Hyperbolic 3-manifolds with nonintersecting closed geodesics, Geom. Dedicata 97 (2003), 251–257. Special volume dedicated to the memory of Hanna Miriam Sandler (1960–1999). MR 2003700, DOI 10.1023/A:1023657806258
- Jonas Beyrer and Beatrice Pozzetti, A collar lemma for partially hyperconvex surface group representations, Trans. Amer. Math. Soc. 374 (2021), no. 10, 6927–6961. MR 4315593, DOI 10.1090/tran/8453
- Armand Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485–535. MR 147566, DOI 10.2307/1970210
- Robert Brooks and J. Peter Matelski, Collars in Kleinian groups, Duke Math. J. 49 (1982), no. 1, 163–182. MR 650375
- Marc Burger and Viktor Schroeder, Volume, diameter and the first eigenvalue of locally symmetric spaces of rank one, J. Differential Geom. 26 (1987), no. 2, 273–284. MR 906391
- Peter Buser, The collar theorem and examples, Manuscripta Math. 25 (1978), no. 4, 349–357. MR 509590, DOI 10.1007/BF01168048
- Peter Buser, Geometry and spectra of compact Riemann surfaces, Progress in Mathematics, vol. 106, Birkhäuser Boston, Inc., Boston, MA, 1992. MR 1183224
- Wensheng Cao and John R. Parker, Jørgensen’s inequality and collars in $n$-dimensional quaternionic hyperbolic space, Q. J. Math. 62 (2011), no. 3, 523–543. MR 2825470, DOI 10.1093/qmath/haq003
- Isaac Chavel, Riemannian geometry, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 98, Cambridge University Press, Cambridge, 2006. A modern introduction. MR 2229062, DOI 10.1017/CBO9780511616822
- Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584
- Isaac Chavel and Edgar A. Feldman, Cylinders on surfaces, Comment. Math. Helv. 53 (1978), no. 3, 439–447. MR 493868, DOI 10.1007/BF02566089
- Ted Chinburg and Matthew Stover, Geodesic curves on Shimura surfaces, Topology Proc. 52 (2018), 113–121. MR 3705536
- Emily B. Dryden and Hugo Parlier, Collars and partitions of hyperbolic cone-surfaces, Geom. Dedicata 127 (2007), 139–149. MR 2338522, DOI 10.1007/s10711-007-9172-6
- Daniel Gallo, A $3$-dimensional hyperbolic collar lemma, Kleinian groups and related topics (Oaxtepec, 1981) Lecture Notes in Math., vol. 971, Springer, Berlin-New York, 1983, pp. 31–35. MR 690276
- F. W. Gehring and G. J. Martin, Inequalities for Möbius transformations and discrete groups, J. Reine Angew. Math. 418 (1991), 31–76. MR 1111201
- Jane Gilman, A geometric approach to Jørgensen’s inequality, Adv. Math. 85 (1991), no. 2, 193–197. MR 1093005, DOI 10.1016/0001-8708(91)90055-C
- William M. Goldman, Complex hyperbolic geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. Oxford Science Publications. MR 1695450, DOI 10.1093/oso/9780198537939.001.0001
- William M. Goldman, Michael Kapovich, and Bernhard Leeb, Complex hyperbolic manifolds homotopy equivalent to a Riemann surface, Comm. Anal. Geom. 9 (2001), no. 1, 61–95. MR 1807952, DOI 10.4310/CAG.2001.v9.n1.a3
- Noemi Halpern, A proof of the collar lemma, Bull. London Math. Soc. 13 (1981), no. 2, 141–144. MR 608099, DOI 10.1112/blms/13.2.141
- Sa’ar Hersonsky and Frédéric Paulin, On the volumes of complex hyperbolic manifolds, Duke Math. J. 84 (1996), no. 3, 719–737. MR 1408542, DOI 10.1215/S0012-7094-96-08422-7
- F. Hirzebruch, Characteristic numbers of homogeneous domains, Seminars on Analytic Functions, Vol. Il, Institute for Advanced Studies, Princeton, 1957, pp. 92–104.
- Linda Keen, Collars on Riemann surfaces, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973) Ann. of Math. Stud., No. 79, Princeton Univ. Press, Princeton, NJ, 1974, pp. 263–268. MR 379833
- Daeyong Kim, Collar lemma in quaternionic hyperbolic manifold, Bull. Korean Math. Soc. 43 (2006), no. 2, 411–418. MR 2229537, DOI 10.4134/BKMS.2006.43.2.411
- Sadayoshi Kojima, Immersed geodesic surfaces in hyperbolic $3$-manifolds, Complex Variables Theory Appl. 29 (1996), no. 1, 45–58. MR 1382002, DOI 10.1080/17476939608814873
- Gye-Seon Lee and Tengren Zhang, Collar lemma for Hitchin representations, Geom. Topol. 21 (2017), no. 4, 2243–2280. MR 3654108, DOI 10.2140/gt.2017.21.2243
- Elon L. Lima, The Jordan-Brouwer separation theorem for smooth hypersurfaces, Amer. Math. Monthly 95 (1988), no. 1, 39–42. MR 935429, DOI 10.2307/2323445
- Sarah Markham and John R. Parker, Collars in complex and quaternionic hyperbolic manifolds, Geom. Dedicata 97 (2003), 199–213. Special volume dedicated to the memory of Hanna Miriam Sandler (1960–1999). MR 2003698, DOI 10.1023/A:1023677417179
- Bernard Maskit, Kleinian groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR 959135
- Robert Meyerhoff, A lower bound for the volume of hyperbolic $3$-manifolds, Canad. J. Math. 39 (1987), no. 5, 1038–1056. MR 918586, DOI 10.4153/CJM-1987-053-6
- J. R. Parker, Notes on Complex Hyperbolic Geometry.
- John R. Parker, On the volumes of cusped, complex hyperbolic manifolds and orbifolds, Duke Math. J. 94 (1998), no. 3, 433–464. MR 1639519, DOI 10.1215/S0012-7094-98-09418-2
- Jouni Parkkonen and Frédéric Paulin, A classification of $\Bbb C$-Fuchsian subgroups of Picard modular groups, Math. Scand. 121 (2017), no. 1, 57–74. MR 3708964, DOI 10.7146/math.scand.a-26128
- Hugo Parlier, A note on collars of simple closed geodesics, Geom. Dedicata 112 (2005), 165–168. MR 2163896, DOI 10.1007/s10711-004-4661-3
- John G. Ratcliffe, Foundations of hyperbolic manifolds, 2nd ed., Graduate Texts in Mathematics, vol. 149, Springer, New York, 2006. MR 2249478
- Richard Schoen, A lower bound for the first eigenvalue of a negatively curved manifold, J. Differential Geometry 17 (1982), no. 2, 233–238. MR 664495
- Matthew Stover, Volumes of Picard modular surfaces, Proc. Amer. Math. Soc. 139 (2011), no. 9, 3045–3056. MR 2811261, DOI 10.1090/S0002-9939-2011-10786-X
- M. Stover, Residual finiteness and discrete subgroups of Lie groups, arXiv.
Bibliographic Information
- Ara Basmajian
- Affiliation: The Graduate Center, CUNY, 365 Fifth Ave., New York, New York 10016; and Hunter College, CUNY, 695 Park Ave., New York, New York 10065
- MR Author ID: 290166
- Email: abasmajian@gc.cuny.edu
- Youngju Kim
- Affiliation: Department of Mathematics Education, Konkuk University, Seoul 05029, Republic of Korea
- MR Author ID: 852777
- ORCID: 0000-0002-9553-8051
- Email: geometer2@konkuk.ac.kr
- Received by editor(s): February 1, 2024
- Received by editor(s) in revised form: August 22, 2024, September 1, 2024, and September 9, 2024
- Published electronically: November 6, 2024
- Additional Notes: Youngju Kim is the corresponding author
The first author was supported by PSC CUNY Award 65245-00 53 and partially supported by Simons Collaboration Grant (359956, A.B.)
The second author was supported by a National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2021R1F1A1045633). - © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 2031-2060
- MSC (2020): Primary 53C55, 22E40; Secondary 30F40
- DOI: https://doi.org/10.1090/tran/9319