A type $\mathrm {III}_{1}$ factor with the smallest outer automorphism group
HTML articles powered by AMS MathViewer
- by Soham Chakraborty;
- Trans. Amer. Math. Soc. 378 (2025), 1593-1617
- DOI: https://doi.org/10.1090/tran/9324
- Published electronically: October 25, 2024
- HTML | PDF
Abstract:
The canonical modular homomorphism provides an embedding of $\mathbb {R}$ into the outer automorphism group $Out(M)$ of any type $\mathrm {III}_{1}$ factor $M$. We provide an explicit construction of a full factor of type $\mathrm {III}_{1}$ with separable predual such that the outer automorphism group is minimal, i.e. this embedding is an isomorphism and a homeomorphism. We obtain such a $\mathrm {III}_{1}$ factor by using an amalgamated free product construction.References
- Jon Aaronson, An introduction to infinite ergodic theory, Mathematical Surveys and Monographs, vol. 50, American Mathematical Society, Providence, RI, 1997. MR 1450400, DOI 10.1090/surv/050
- Yuki Arano, Yusuke Isono, and Amine Marrakchi, Ergodic theory of affine isometric actions on Hilbert spaces, Geom. Funct. Anal. 31 (2021), no. 5, 1013–1094. MR 4356699, DOI 10.1007/s00039-021-00584-2
- Rémi Boutonnet, Cyril Houdayer, and Sven Raum, Amalgamated free product type III factors with at most one Cartan subalgebra, Compos. Math. 150 (2014), no. 1, 143–174. MR 3164361, DOI 10.1112/S0010437X13007537
- Robert J. Blattner, Automorphic group representations, Pacific J. Math. 8 (1958), 665–677. MR 103421, DOI 10.2140/pjm.1958.8.665
- F. Calderoni, Lecture notes on countable borel equivalence relations, 2020.
- Alain Connes and Wolfgang Krieger, Measure space automorphisms, the normalizers of their full groups, and approximate finiteness, J. Functional Analysis 24 (1977), no. 4, 336–352. MR 444900, DOI 10.1016/0022-1236(77)90062-3
- A. Connes, Almost periodic states and factors of type $\textrm {III}_{1}$, J. Functional Analysis 16 (1974), 415–445. MR 358374, DOI 10.1016/0022-1236(74)90059-7
- A. Connes, A factor of type $\textrm {II}_{1}$ with countable fundamental group, J. Operator Theory 4 (1980), no. 1, 151–153. MR 587372
- Alain Connes and Masamichi Takesaki, The flow of weights on factors of type $\textrm {III}$, Tohoku Math. J. (2) 29 (1977), no. 4, 473–575. MR 480760, DOI 10.2748/tmj/1178240493
- Steven Deprez, Explicit examples of equivalence relations and factors with prescribed fundamental group and outer automorphism group, 2012.
- Steven Deprez and Stefaan Vaes, A classification of all finite index subfactors for a class of group-measure space $\textrm {II}_1$ factors, J. Noncommut. Geom. 5 (2011), no. 4, 523–545. MR 2838524, DOI 10.4171/JNCG/85
- Daniel Drimbe and Stefaan Vaes, Superrigidity for dense subgroups of Lie groups and their actions on homogeneous spaces, Math. Ann. 386 (2023), no. 3-4, 2015–2059. MR 4612412, DOI 10.1007/s00208-022-02437-1
- Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289–324. MR 578656, DOI 10.1090/S0002-9947-1977-0578656-4
- Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. II, Trans. Amer. Math. Soc. 234 (1977), no. 2, 325–359. MR 578730, DOI 10.1090/S0002-9947-1977-0578730-2
- Alex Furman, Measurable rigidity of actions on infinite measure homogeneous spaces. II, J. Amer. Math. Soc. 21 (2008), no. 2, 479–512. MR 2373357, DOI 10.1090/S0894-0347-07-00588-7
- Sébastien Falguières and Stefaan Vaes, Every compact group arises as the outer automorphism group of a $\textrm {II}_1$ factor, J. Funct. Anal. 254 (2008), no. 9, 2317–2328. MR 2409162, DOI 10.1016/j.jfa.2008.02.002
- Uffe Haagerup, The standard form of von Neumann algebras, Math. Scand. 37 (1975), no. 2, 271–283. MR 407615, DOI 10.7146/math.scand.a-11606
- L. K. Hua and I. Reiner, Automorphisms of the projective unimodular group, Trans. Amer. Math. Soc. 72 (1952), 467–473. MR 49194, DOI 10.1090/S0002-9947-1952-0049194-5
- Cyril Houdayer and Stefaan Vaes, Type III factors with unique Cartan decomposition, J. Math. Pures Appl. (9) 100 (2013), no. 4, 564–590 (English, with English and French summaries). MR 3102166, DOI 10.1016/j.matpur.2013.01.013
- Adrian Ioana, Alexander S. Kechris, and Todor Tsankov, Subequivalence relations and positive-definite functions, Groups Geom. Dyn. 3 (2009), no. 4, 579–625. MR 2529949, DOI 10.4171/GGD/71
- Adrian Ioana, Cocycle superrigidity for profinite actions of property (T) groups, Duke Math. J. 157 (2011), no. 2, 337–367. MR 2783933, DOI 10.1215/00127094-2011-008
- Adrian Ioana, Cartan subalgebras of amalgamated free product $\textrm {II}_1$ factors, Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 1, 71–130 (English, with English and French summaries). With an appendix by Ioana and Stefaan Vaes. MR 3335839, DOI 10.24033/asens.2239
- Adrian Ioana, Jesse Peterson, and Sorin Popa, Amalgamated free products of weakly rigid factors and calculation of their symmetry groups, Acta Math. 200 (2008), no. 1, 85–153. MR 2386109, DOI 10.1007/s11511-008-0024-5
- J. Keersmaekers and A. Speelman, $\textrm {II}_1$ factors and equivalence relations with distinct fundamental groups, Internat. J. Math. 24 (2013), no. 3, 1350016, 24. MR 3048005, DOI 10.1142/S0129167X1350016X
- Tom De Medts, Lecture notes on linear algebraic groups, 2022-2023.
- Calvin C. Moore, Group extensions and cohomology for locally compact groups. III, Trans. Amer. Math. Soc. 221 (1976), no. 1, 1–33. MR 414775, DOI 10.1090/S0002-9947-1976-0414775-X
- Jesse Peterson, Lecture notes on ergodic theory, 2011.
- Sorin Popa, Some rigidity results for non-commutative Bernoulli shifts, J. Funct. Anal. 230 (2006), no. 2, 273–328. MR 2186215, DOI 10.1016/j.jfa.2005.06.017
- Sorin Popa, Strong rigidity of $\rm II_1$ factors arising from malleable actions of $w$-rigid groups. I, Invent. Math. 165 (2006), no. 2, 369–408. MR 2231961, DOI 10.1007/s00222-006-0501-4
- Sorin Popa, Strong rigidity of $\rm II_1$ factors arising from malleable actions of $w$-rigid groups. II, Invent. Math. 165 (2006), no. 2, 409–451. MR 2231962, DOI 10.1007/s00222-006-0502-3
- Sorin Popa, Cocycle and orbit equivalence superrigidity for malleable actions of $w$-rigid groups, Invent. Math. 170 (2007), no. 2, 243–295. MR 2342637, DOI 10.1007/s00222-007-0063-0
- Sorin Popa, Cocycle and orbit equivalence superrigidity for malleable actions of $w$-rigid groups, Invent. Math. 170 (2007), no. 2, 243–295. MR 2342637, DOI 10.1007/s00222-007-0063-0
- Sorin Popa, On the superrigidity of malleable actions with spectral gap, J. Amer. Math. Soc. 21 (2008), no. 4, 981–1000. MR 2425177, DOI 10.1090/S0894-0347-07-00578-4
- Sorin Popa and Stefaan Vaes, Strong rigidity of generalized Bernoulli actions and computations of their symmetry groups, Adv. Math. 217 (2008), no. 2, 833–872. MR 2370283, DOI 10.1016/j.aim.2007.09.006
- Sorin Popa and Stefaan Vaes, Actions of $\Bbb F_\infty$ whose $\textrm {II}_1$ factors and orbit equivalence relations have prescribed fundamental group, J. Amer. Math. Soc. 23 (2010), no. 2, 383–403. MR 2601038, DOI 10.1090/S0894-0347-09-00644-4
- Sorin Popa and Stefaan Vaes, Cocycle and orbit superrigidity for lattices in $\textrm {SL}(n,\Bbb R)$ acting on homogeneous spaces, Geometry, rigidity, and group actions, Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 2011, pp. 419–451. MR 2807839
- V. S. Sunder, An invitation to von Neumann algebras, Universitext, Springer-Verlag, New York, 1987. MR 866671, DOI 10.1007/978-1-4613-8669-8
- Klaus Schmidt and Peter Walters, Mildly mixing actions of locally compact groups, Proc. London Math. Soc. (3) 45 (1982), no. 3, 506–518. MR 675419, DOI 10.1112/plms/s3-45.3.506
- Stefaan Vaes, Explicit computations of all finite index bimodules for a family of $\textrm {II}_1$ factors, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 5, 743–788 (English, with English and French summaries). MR 2504433, DOI 10.24033/asens.2081
- Stefaan Vaes, Normalizers inside amalgamated free product von Neumann algebras, Publ. Res. Inst. Math. Sci. 50 (2014), no. 4, 695–721. MR 3273307, DOI 10.4171/PRIMS/147
- Bram Verjans, W*- and orbit equivalence rigidity for group actions of type III, Ph.D. Thesis, 2022.
- Stefaan Vaes and Bram Verjans, Orbit equivalence superrigidity for type $\textrm {III}_0$ actions, Ergodic Theory Dynam. Systems 43 (2023), no. 12, 4193–4225. MR 4664830, DOI 10.1017/etds.2022.112
- Shmuel Weinberger, $\textrm {SL}(n,\mathbf Z)$ cannot act on small tori, Geometric topology (Athens, GA, 1993) AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc., Providence, RI, 1997, pp. 406–408. MR 1470739, DOI 10.1090/amsip/002.1/22
- Robert J. Zimmer, Strong rigidity for ergodic actions of semisimple Lie groups, Group actions in ergodic theory, geometry, and topology—selected papers, Univ. Chicago Press, Chicago, IL, 2020, pp. 183–201. Reprint of [ 0595205]. MR 4521477
Bibliographic Information
- Soham Chakraborty
- Affiliation: Department of Mathematics, KU Leuven, 02.32, Celestijnenlaan 200B, Leuven 3001, Belgium
- MR Author ID: 1594098
- ORCID: 0009-0007-5073-9881
- Email: soham.chakraborty@kuleuven.be, soham.chakraborty.math@gmail.com
- Received by editor(s): January 2, 2024
- Received by editor(s) in revised form: June 25, 2024, and August 14, 2024
- Published electronically: October 25, 2024
- Additional Notes: The author was supported by FWO research project G090420N of the Research Foundation Flanders.
- © Copyright 2024 Soham Chakraborty
- Journal: Trans. Amer. Math. Soc. 378 (2025), 1593-1617
- MSC (2020): Primary 46L40
- DOI: https://doi.org/10.1090/tran/9324