Long time dynamics of electroconvection in bounded domains
HTML articles powered by AMS MathViewer
- by Elie Abdo and Mihaela Ignatova;
- Trans. Amer. Math. Soc. 378 (2025), 2187-2245
- DOI: https://doi.org/10.1090/tran/9344
- Published electronically: December 27, 2024
- HTML | PDF | Request permission
Abstract:
We discuss nonlinear nonlocal equations with fractional diffusion describing electroconvection phenomena in incompressible viscous fluids. We prove the global well-posedness, global regularity and long time dynamics of the model in bounded smooth domains with Dirichlet boundary conditions. We prove the existence and uniqueness of exponentially decaying in time solutions for $H^1$ initial data regardless of the fractional dissipative regularity. In the presence of time independent body forces in the fluid, we prove the existence of a compact finite dimensional global attractor. In the case of periodic boundary conditions, we prove that the unique smooth solution is globally analytic in time, and belongs to a Gevrey class of functions that depends on the dissipative regularity of the model.References
- Elie Abdo and Mihaela Ignatova, Long time dynamics of a model of electroconvection, Trans. Amer. Math. Soc. 374 (2021), no. 8, 5849–5875. MR 4293790, DOI 10.1090/tran/8394
- Andrea Bonito and Peng Wei, Electroconvection of thin liquid crystals: model reduction and numerical simulations, J. Comput. Phys. 405 (2020), 109140, 19. MR 4046167, DOI 10.1016/j.jcp.2019.109140
- Haïm Brezis and Petru Mironescu, Gagliardo-Nirenberg inequalities and non-inequalities: the full story, Ann. Inst. H. Poincaré C Anal. Non Linéaire 35 (2018), no. 5, 1355–1376. MR 3813967, DOI 10.1016/j.anihpc.2017.11.007
- Luis A. Caffarelli and Pablo Raúl Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. H. Poincaré C Anal. Non Linéaire 33 (2016), no. 3, 767–807. MR 3489634, DOI 10.1016/j.anihpc.2015.01.004
- Luis A. Caffarelli and Alexis Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. (2) 171 (2010), no. 3, 1903–1930. MR 2680400, DOI 10.4007/annals.2010.171.1903
- Peter Constantin, Tarek Elgindi, Mihaela Ignatova, and Vlad Vicol, On some electroconvection models, J. Nonlinear Sci. 27 (2017), no. 1, 197–211. MR 3600829, DOI 10.1007/s00332-016-9329-2
- Peter Constantin and Ciprian Foias, Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988. MR 972259, DOI 10.7208/chicago/9780226764320.001.0001
- Peter Constantin and Mihaela Ignatova, Critical SQG in bounded domains, Ann. PDE 2 (2016), no. 2, Art. 8, 42. MR 3595454, DOI 10.1007/s40818-016-0017-1
- Peter Constantin and Mihaela Ignatova, Estimates near the boundary for critical SQG, Ann. PDE 6 (2020), no. 1, Paper No. 3, 30. MR 4093852, DOI 10.1007/s40818-020-00079-7
- Peter Constantin, Andrew J. Majda, and Esteban Tabak, Formation of strong fronts in the $2$-D quasigeostrophic thermal active scalar, Nonlinearity 7 (1994), no. 6, 1495–1533. MR 1304437, DOI 10.1088/0951-7715/7/6/001
- Huy Quang Nguyen, Global weak solutions for generalized SQG in bounded domains, Anal. PDE 11 (2018), no. 4, 1029–1047. MR 3749375, DOI 10.2140/apde.2018.11.1029
- Peter Constantin and Huy Quang Nguyen, Global weak solutions for SQG in bounded domains, Comm. Pure Appl. Math. 71 (2018), no. 11, 2323–2333. MR 3862092, DOI 10.1002/cpa.21720
- Peter Constantin and Huy Quang Nguyen, Local and global strong solutions for SQG in bounded domains, Phys. D 376/377 (2018), 195–203. MR 3815216, DOI 10.1016/j.physd.2017.08.008
- P. Constantin, M. Ignatova, and Q. -H. Nguyen, Global regularity for critical SQG in bounded domains, arXiv:2312.12265 [math.AP] (2023).
- Peter Constantin, Andrei Tarfulea, and Vlad Vicol, Long time dynamics of forced critical SQG, Comm. Math. Phys. 335 (2015), no. 1, 93–141. MR 3314501, DOI 10.1007/s00220-014-2129-3
- Peter Constantin and Vlad Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geom. Funct. Anal. 22 (2012), no. 5, 1289–1321. MR 2989434, DOI 10.1007/s00039-012-0172-9
- Peter Constantin and Jiahong Wu, Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal. 30 (1999), no. 5, 937–948. MR 1709781, DOI 10.1137/S0036141098337333
- Peter Constantin and Jiahong Wu, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation, Ann. Inst. H. Poincaré C Anal. Non Linéaire 25 (2008), no. 6, 1103–1110. MR 2466323, DOI 10.1016/j.anihpc.2007.10.001
- Michele Coti Zelati and Vlad Vicol, On the global regularity for the supercritical SQG equation, Indiana Univ. Math. J. 65 (2016), no. 2, 535–552. MR 3498176, DOI 10.1512/iumj.2016.65.5807
- Z. A. Daya, V. B. Deyirmenjian, S. W. Morris, and J. R. de Bruyn, Annular electroconvection with shear, Phys. Rev. Lett. 80 (1998), 964–967.
- Robert Denk, Matthias Hieber, and Jan Prüss, Optimal $L^p$-$L^q$-estimates for parabolic boundary value problems with inhomogeneous data, Math. Z. 257 (2007), no. 1, 193–224. MR 2318575, DOI 10.1007/s00209-007-0120-9
- X. -T. Duong, The $L^p$ boundedness of Riesz transforms associated with divergence form operators, Proc. Centre Math. Appl. 37 (1999), 15–25.
- D. E. Edmunds and R. Hurri-Syrjänen, Weighted Hardy inequalities, J. Math. Anal. Appl. 310 (2005), no. 2, 424–435. MR 2022936, DOI 10.1016/j.jmaa.2005.01.066
- Reinhard Farwig, Hideo Kozono, and David Wegmann, Maximal regularity of the Stokes operator in an exterior domain with moving boundary and application to the Navier-Stokes equations, Math. Ann. 375 (2019), no. 3-4, 949–972. MR 4023368, DOI 10.1007/s00208-018-1773-x
- C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal. 87 (1989), no. 2, 359–369. MR 1026858, DOI 10.1016/0022-1236(89)90015-3
- Matthias Geissert, Horst Heck, and Matthias Hieber, $L^p$-theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle, J. Reine Angew. Math. 596 (2006), 45–62. MR 2254804, DOI 10.1515/CRELLE.2006.051
- Yoshikazu Giga and Tetsuro Miyakawa, Solutions in $L_r$ of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal. 89 (1985), no. 3, 267–281. MR 786550, DOI 10.1007/BF00276875
- Jean-Luc Guermond and Abner Salgado, A note on the Stokes operator and its powers, J. Appl. Math. Comput. 36 (2011), no. 1-2, 241–250. MR 2794144, DOI 10.1007/s12190-010-0400-0
- Matthias Hieber and Jan Prüss, Heat kernels and maximal $L^p$-$L^q$ estimates for parabolic evolution equations, Comm. Partial Differential Equations 22 (1997), no. 9-10, 1647–1669. MR 1469585, DOI 10.1080/03605309708821314
- Matthias Hieber and Jürgen Saal, The Stokes equation in the $L^p$-setting: well-posedness and regularity properties, Handbook of mathematical analysis in mechanics of viscous fluids, Springer, Cham, 2018, pp. 117–206. MR 3916775, DOI 10.1007/978-3-319-13344-7_{3}
- Taoufik Hmidi and Sahbi Keraani, Global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces, Adv. Math. 214 (2007), no. 2, 618–638. MR 2349714, DOI 10.1016/j.aim.2007.02.013
- Mihaela Ignatova, Construction of solutions of the critical SQG equation in bounded domains, Adv. Math. 351 (2019), 1000–1023. MR 3956764, DOI 10.1016/j.aim.2019.05.034
- David Jerison and Carlos E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130 (1995), no. 1, 161–219. MR 1331981, DOI 10.1006/jfan.1995.1067
- Jae-Myoung Kim, On regularity criteria of the Navier-Stokes equations in bounded domains, J. Math. Phys. 51 (2010), no. 5, 053102, 7. MR 2666972, DOI 10.1063/1.3405963
- A. Kiselev, F. Nazarov, and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math. 167 (2007), no. 3, 445–453. MR 2276260, DOI 10.1007/s00222-006-0020-3
- M. -C. Ma, G. Li, X. Chen, L. -A. Archer, and J. Wan, Suppression of dendrite growth by cross-flow in microfluidics, Sci. Adv. 7 (2021), no. 8.
- Ali Mani and Karen May Wang, Electroconvection near electrochemical interfaces: experiments, modeling, and computation, Annual review of fluid mechanics. Vol. 52, Annu. Rev. Fluid Mech., vol. 52, Annual Reviews, Palo Alto, CA, 2020, pp. 509–529. MR 4508945
- Paolo Maremonti, On the $L^p$-$L^q$ estimates of the gradient of solutions to the Stokes problem, J. Evol. Equ. 19 (2019), no. 3, 645–676. MR 3997240, DOI 10.1007/s00028-019-00490-z
- Zhongwei Shen, Bounds of Riesz transforms on $L^p$ spaces for second order elliptic operators, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 1, 173–197 (English, with English and French summaries). MR 2141694, DOI 10.5802/aif.2094
- Yoshihiro Shibata and Senjo Shimizu, On the maximal $L_p$-$L_q$ regularity of the Stokes problem with first order boundary condition; model problems, J. Math. Soc. Japan 64 (2012), no. 2, 561–626. MR 2916080
- Logan F. Stokols and Alexis F. Vasseur, Hölder regularity up to the boundary for critical SQG on bounded domains, Arch. Ration. Mech. Anal. 236 (2020), no. 3, 1543–1591. MR 4076071, DOI 10.1007/s00205-020-01498-3
- J. Tan and E. Ryan, Computational study of electro-convection effects on dendrite growth in batteries, J. Power Sources 323 (2016), 67–77.
- Patrick Tolksdorf, On the $\textrm {L}^p$-theory of the Navier-Stokes equations on three-dimensional bounded Lipschitz domains, Math. Ann. 371 (2018), no. 1-2, 445–460. MR 3788854, DOI 10.1007/s00208-018-1653-4
- Patrick Tolksdorf and Keiichi Watanabe, The Navier-Stokes equations in exterior Lipschitz domains: $L^p$-theory, J. Differential Equations 269 (2020), no. 7, 5765–5801. MR 4104942, DOI 10.1016/j.jde.2020.04.015
- P. Tsai, Z. A. Daya, V. B. Deyirmenjian, and S. W. Morris, Direct numerical simulation of supercritical annular electroconvection, Phys. Rev. E 76 (2007), 1–11.
- Y. Zhang, X. Yang, Y. Zhan, Y. Zhang, J. He, P. Lv, D. Yuan, X. Hu, D. Liu, D. -J. Broer, G. Zhou, and W. Zhao, Electroconvection in zwitterion-doped nematic liquid crystals and application as smart windows, Adv. Opt. Mater. 9 (2020), no. 3.
Bibliographic Information
- Elie Abdo
- Affiliation: Department of Mathematics, University of California Santa Barbara, California 93106
- MR Author ID: 1449548
- Email: elieabdo@ucsb.edu
- Mihaela Ignatova
- Affiliation: Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122
- MR Author ID: 903767
- ORCID: 0000-0002-1461-7365
- Email: ignatova@temple.edu
- Received by editor(s): March 10, 2024
- Received by editor(s) in revised form: September 29, 2024
- Published electronically: December 27, 2024
- Additional Notes: The work of the second author was partially supported by NSF grant DMS 2204614.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 2187-2245
- MSC (2020): Primary 35Q35, 35Q30, 35R11
- DOI: https://doi.org/10.1090/tran/9344