Homology and $K$-theory of dynamical systems III. Beyond stably disconnected Smale spaces
HTML articles powered by AMS MathViewer
- by Valerio Proietti and Makoto Yamashita;
- Trans. Amer. Math. Soc. 378 (2025), 2129-2155
- DOI: https://doi.org/10.1090/tran/9353
- Published electronically: December 30, 2024
- HTML | PDF
Abstract:
We study homological invariants of étale groupoids arising from Smale spaces, continuing our previous work, but going beyond the stably disconnected case by incorporating resolutions in the space direction. We show that the homology groups defined by Putnam are isomorphic to the Crainic–Moerdijk groupoid homology with integer coefficients.
We also show that the $K$-groups of C$^*$-algebras of stable and unstable equivalence relations have finite rank. For unstably disconnected Smale spaces, we provide a cohomological spectral sequence whose second page shows Putnam’s (stable) homology groups, and converges to the $K$-groups of the unstable C$^*$-algebra.
References
- Jared E. Anderson and Ian F. Putnam, Topological invariants for substitution tilings and their associated $C^*$-algebras, Ergodic Theory Dynam. Systems 18 (1998), no. 3, 509–537. MR 1631708, DOI 10.1017/S0143385798100457
- Christian Bönicke, Clément Dell’Aiera, James Gabe, and Rufus Willett, Dynamic asymptotic dimension and Matui’s HK conjecture, Proc. Lond. Math. Soc. 126 (2023), no. 4, 1182–1253, available at https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms.12510., DOI 10.1112/plms.12510
- Christian Bönicke and Valerio Proietti, A categorical approach to the Baum-Connes conjecture for étale groupoids, J. Inst. Math. Jussieu 23 (2024), no. 5, 2319–2364. MR 4821559, DOI 10.1017/S1474748023000531
- Michael Brin and Garrett Stuck, Introduction to dynamical systems, Cambridge University Press, Cambridge, 2002. MR 1963683, DOI 10.1017/CBO9780511755316
- Marius Crainic and Ieke Moerdijk, A homology theory for étale groupoids, J. Reine Angew. Math. 521 (2000), 25–46. MR 1752294, DOI 10.1515/crll.2000.029
- Robin J. Deeley, A counterexample to the HK-conjecture that is principal, Ergodic Theory Dynam. Systems 43 (2023), no. 6, 1829–1846. MR 4583796, DOI 10.1017/etds.2022.25
- Robin J. Deeley, Magnus Goffeng, and Allan Yashinski, Smale space $C^*$-algebras have nonzero projections, Proc. Amer. Math. Soc. 148 (2020), no. 4, 1625–1639. MR 4069199, DOI 10.1090/proc/14837
- Robin J. Deeley, D. Brady Killough, and Michael F. Whittaker, Dynamical correspondences for Smale spaces, New York J. Math. 22 (2016), 943–988. MR 3576278
- Robin J. Deeley, D. Brady Killough, and Michael F. Whittaker, Functorial properties of Putnam’s homology theory for Smale spaces, Ergodic Theory Dynam. Systems 36 (2016), no. 5, 1411–1440. MR 3519418, DOI 10.1017/etds.2014.134
- Robin J. Deeley and Karen R. Strung, Nuclear dimension and classification of $\rm C^*$-algebras associated to Smale spaces, Trans. Amer. Math. Soc. 370 (2018), no. 5, 3467–3485. MR 3766855, DOI 10.1090/tran/7046
- Siegfried Echterhoff and Heath Emerson, Structure and $K$-theory of crossed products by proper actions, Expo. Math. 29 (2011), no. 3, 300–344. MR 2820377, DOI 10.1016/j.exmath.2011.05.001
- Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, NJ, 1952. MR 50886, DOI 10.1515/9781400877492
- Ryszard Engelking, Dimension theory, North-Holland Mathematical Library, vol. 19, North-Holland Publishing Co., Amsterdam-Oxford-New York; PWN—Polish Scientific Publishers, Warsaw, 1978. Translated from the Polish and revised by the author. MR 482697
- Carla Farsi, Alex Kumjian, David Pask, and Aidan Sims, Ample groupoids: equivalence, homology, and Matui’s HK conjecture, Münster J. Math. 12 (2019), no. 2, 411–451. MR 4030921, DOI 10.17879/53149724091
- Zbigniew Fiedorowicz and Jean-Louis Loday, Crossed simplicial groups and their associated homology, Trans. Amer. Math. Soc. 326 (1991), no. 1, 57–87. MR 998125, DOI 10.1090/S0002-9947-1991-0998125-4
- Roger Godement, Topologie algébrique et théorie des faisceaux, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XIII, Hermann, Paris, 1973 (French). Troisième édition revue et corrigée; Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1252. MR 345092
- Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Modern Birkhäuser Classics, Birkhäuser Verlag, Basel, 2009. Reprint of the 1999 edition [MR1711612]. MR 2840650, DOI 10.1007/978-3-0346-0189-4
- Jerome Kaminker, Ian F. Putnam, and Michael F. Whittaker, K-theoretic duality for hyperbolic dynamical systems, J. Reine Angew. Math. 730 (2017), 263–299. MR 3692021, DOI 10.1515/crelle-2014-0126
- Eberhard Kirchberg and N. Christopher Phillips, Embedding of exact $C^*$-algebras in the Cuntz algebra $\scr O_2$, J. Reine Angew. Math. 525 (2000), 17–53. MR 1780426, DOI 10.1515/crll.2000.065
- Wolfgang Krieger, On dimension functions and topological Markov chains, Invent. Math. 56 (1980), no. 3, 239–250. MR 561973, DOI 10.1007/BF01390047
- Pierre-Yves Le Gall, Théorie de Kasparov équivariante et groupoïdes. I, $K$-Theory 16 (1999), no. 4, 361–390 (French, with English and French summaries). MR 1686846, DOI 10.1023/A:1007707525423
- Kengo Matsumoto, Topological conjugacy of topological Markov shifts and Ruelle algebras, J. Operator Theory 82 (2019), no. 2, 253–284. MR 4015953, DOI 10.7900/jot
- Hiroki Matui, Homology and topological full groups of étale groupoids on totally disconnected spaces, Proc. Lond. Math. Soc. (3) 104 (2012), no. 1, 27–56. MR 2876963, DOI 10.1112/plms/pdr029
- Hiroki Matui, Étale groupoids arising from products of shifts of finite type, Adv. Math. 303 (2016), 502–548. MR 3552533, DOI 10.1016/j.aim.2016.08.023
- Ralf Meyer, Homological algebra in bivariant $K$-theory and other triangulated categories. II, Tbil. Math. J. 1 (2008), 165–210. MR 2563811
- Ralf Meyer and Ryszard Nest, Homological algebra in bivariant $K$-theory and other triangulated categories. I, Triangulated categories, London Math. Soc. Lecture Note Ser., vol. 375, Cambridge Univ. Press, Cambridge, 2010, pp. 236–289. MR 2681710
- Paul S. Muhly, Jean N. Renault, and Dana P. Williams, Equivalence and isomorphism for groupoid $C^\ast$-algebras, J. Operator Theory 17 (1987), no. 1, 3–22. MR 873460
- Volodymyr Nekrashevych, Self-similar groups, Mathematical Surveys and Monographs, vol. 117, American Mathematical Society, Providence, RI, 2005. MR 2162164, DOI 10.1090/surv/117
- Volodymyr Nekrashevych, $C^*$-algebras and self-similar groups, J. Reine Angew. Math. 630 (2009), 59–123. MR 2526786, DOI 10.1515/CRELLE.2009.035
- S. Nishikawa and V. Proietti, Groups with Spanier–Whitehead duality, Ann. $K$-theory 5 (2020), no. 3, 465–500., DOI 10.2140/akt.2020.5.465
- N. Christopher Phillips, A classification theorem for nuclear purely infinite simple $C^*$-algebras, Doc. Math. 5 (2000), 49–114. MR 1745197, DOI 10.4171/dm/75
- Valerio Proietti, A note on homology for Smale spaces, Groups Geom. Dyn. 14 (2020), no. 3, 813–836. MR 4167022, DOI 10.4171/ggd/564
- Valerio Proietti and Makoto Yamashita, Homology and $K$-theory of dynamical systems I. Torsion-free ample groupoids, Ergodic Theory Dynam. Systems 42 (2022), no. 8, 2630–2660. MR 4448401, DOI 10.1017/etds.2021.50
- Valerio Proietti and Makoto Yamashita, Homology and $K$-theory of dynamical systems II. Smale spaces with totally disconnected transversal, J. Noncommut. Geom. 17 (2023), no. 3, 957–998. MR 4626307, DOI 10.4171/jncg/494
- Valerio Proietti and Makoto Yamashita, Homology and K-theory of dynamical systems IV. Further structural results on groupoid homology, Ergodic Theory Dynam. Systems 45 (2025), no. 1, 247–273. MR 4833663, DOI 10.1017/etds.2024.37
- Ian F. Putnam, $C^*$-algebras from Smale spaces, Canad. J. Math. 48 (1996), no. 1, 175–195. MR 1382481, DOI 10.4153/CJM-1996-008-2
- Ian F. Putnam, Functoriality of the $C^*$-algebras associated with hyperbolic dynamical systems, J. London Math. Soc. (2) 62 (2000), no. 3, 873–884. MR 1794291, DOI 10.1112/S002461070000140X
- Ian F. Putnam, A homology theory for Smale spaces, Mem. Amer. Math. Soc. 232 (2014), no. 1094, viii+122. MR 3243636, DOI 10.1090/memo/1094
- Ian F. Putnam, Lecture notes on smale spaces, 2015. Accessed: 2010-09-30.
- Ian F. Putnam and Jack Spielberg, The structure of $C^*$-algebras associated with hyperbolic dynamical systems, J. Funct. Anal. 163 (1999), no. 2, 279 –299., DOI 10.1006/jfan.1998.3379
- Jean Renault, A groupoid approach to $C^{\ast }$-algebras, Lecture Notes in Mathematics, vol. 793, Springer, Berlin, 1980. MR 584266, DOI 10.1007/BFb0091072
- David Ruelle, Thermodynamic formalism, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004. The mathematical structures of equilibrium statistical mechanics. MR 2129258, DOI 10.1017/CBO9780511617546
- B. Saint-Donat, Techniques de descente cohomologique, Théorie des topos et cohomologie étale des schémas. tome 2., 1972. SGA4, Vbis., DOI 10.1007/BFb0061321
- Eduardo Scarparo, Homology of odometers, Ergodic Theory Dynam. Systems 40 (2020), no. 9, 2541–2551. MR 4130816, DOI 10.1017/etds.2019.13
- Graeme Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105–112. MR 232393, DOI 10.1007/BF02684591
- Klaus Thomsen, $C^*$-algebras of homoclinic and heteroclinic structure in expansive dynamics, Mem. Amer. Math. Soc. 206 (2010), no. 970, x+122. MR 2667385, DOI 10.1090/S0065-9266-10-00581-8
- Jean-Louis Tu, La conjecture de Baum-Connes pour les feuilletages moyennables, $K$-Theory 17 (1999), no. 3, 215–264 (French, with English and French summaries). MR 1703305, DOI 10.1023/A:1007744304422
Bibliographic Information
- Valerio Proietti
- Affiliation: Department of Mathematics, University of Oslo, P.O. box 1053, Blindern, 0316 Oslo, Norway
- MR Author ID: 1397205
- ORCID: 0000-0001-6615-0560
- Email: valeriop@math.uio.no
- Makoto Yamashita
- Affiliation: Department of Mathematics, University of Oslo, P.O. box 1053, Blindern, 0316 Oslo, Norway
- MR Author ID: 722586
- ORCID: 0000-0002-1738-9652
- Email: makotoy@math.uio.no
- Received by editor(s): October 23, 2023
- Received by editor(s) in revised form: September 23, 2024
- Published electronically: December 30, 2024
- Additional Notes: The research of the first author was supported by: Foreign Young Talents’ grant (National Natural Science Foundation of China, QN2021137002L), CREST Grant Number JPMJCR19T2 (Japan Science and Technology Agency of the Ministry of Education, Culture, Sports, Science and Technology), Marie Skłodowska-Curie Individual Fellowship (Horizon Europe, European Commission, Project No. 101063362). The research of the second author was funded, in part, by The Research Council of Norway [project 300837].
- © Copyright 2024 Valerio Proietti and Makoto Yamashita
- Journal: Trans. Amer. Math. Soc. 378 (2025), 2129-2155
- MSC (2020): Primary 37B02, 55T25, 46L80
- DOI: https://doi.org/10.1090/tran/9353