Enumeration of three quadrant walks with small steps and walks on other $M$-quadrant cones
HTML articles powered by AMS MathViewer
- by Andrew Elvey Price;
- Trans. Amer. Math. Soc. 378 (2025), 3005-3084
- DOI: https://doi.org/10.1090/tran/9103
- Published electronically: March 5, 2025
- HTML | PDF | Request permission
Abstract:
We address the enumeration of walks with small steps confined to a two-dimensional cone, for example the quarter plane, three-quarter plane or the slit plane. In the quarter plane case, the solutions for unweighted step-sets are already well understood, in the sense that it is known precisely for which cases the generating function is algebraic, D-finite or D-algebraic, and exact integral expressions are known in all cases. We derive similar results in a much more general setting: we enumerate walks on an $M$-quadrant cone for any positive integer $M$, with weighted steps starting at any point. The main breakthrough in this work is the derivation of an analytic functional equation which characterises the generating function of these walks, which is analogous to one now used widely for quarter-plane walks. In the case $M=3$, which corresponds to walks avoiding a quadrant, we provide exact integral-expression solutions for walks with weighted small steps which determine the generating function $\mathsf {C}(x,y;t)$ counting these walks. Moreover, for each step-set and starting point of the walk we determine whether the generating function $\mathsf {C}(x,y;t)$ is algebraic, D-finite or D-algebraic as a function of $x$ and $y$. In fact we provide results of this type for any $M$-quadrant cone, showing that this nature is the same for any odd $M$. For $M$ even we find that the generating functions counting these walks are D-finite in $x$ and $y$, and algebraic if and only if the starting point of the walk is on the same axis as the boundaries of the cone.References
- N. I. Akhiezer, Elements of the theory of elliptic functions, Translations of Mathematical Monographs, vol. 79, American Mathematical Society, Providence, RI, 1990. Translated from the second Russian edition by H. H. McFaden. MR 1054205, DOI 10.1090/mmono/079
- Olivier Bernardi, Mireille Bousquet-Mélou, and Kilian Raschel, Counting quadrant walks via Tutte’s invariant method, Comb. Theory 1 (2021), Paper No. 3, 77. MR 4396208, DOI 10.5070/C61055360
- Alin Bostan and Manuel Kauers, The complete generating function for Gessel walks is algebraic, Proc. Amer. Math. Soc. 138 (2010), no. 9, 3063–3078. With an appendix by Mark van Hoeij. MR 2653931, DOI 10.1090/S0002-9939-2010-10398-2
- Mireille Bousquet-Mélou, Walks on the slit plane: other approaches, Adv. in Appl. Math. 27 (2001), no. 2-3, 243–288. Special issue in honor of Dominique Foata’s 65th birthday (Philadelphia, PA, 2000). MR 1868965, DOI 10.1006/aama.2001.0734
- Mireille Bousquet-Mélou, Square lattice walks avoiding a quadrant, J. Combin. Theory Ser. A 144 (2016), 37–79. MR 3534064, DOI 10.1016/j.jcta.2016.06.010
- Mireille Bousquet-Mélou, Enumeration of three-quadrant walks via invariants: some diagonally symmetric models, Canad. J. Math. 75 (2023), no. 5, 1566–1632. MR 4657041, DOI 10.4153/s0008414x22000487
- Mireille Bousquet-Mélou and Marni Mishna, Walks with small steps in the quarter plane, Algorithmic probability and combinatorics, Contemp. Math., vol. 520, Amer. Math. Soc., Providence, RI, 2010, pp. 1–39. MR 2681853, DOI 10.1090/conm/520/10252
- Mireille Bousquet-Mélou and Gilles Schaeffer, Walks on the slit plane, Probab. Theory Related Fields 124 (2002), no. 3, 305–344. MR 1939650, DOI 10.1007/s004400200205
- Mireille Bousquet-Mélou and Michael Wallner, More models of walks avoiding a quadrant, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms, LIPIcs. Leibniz Int. Proc. Inform., vol. 159, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2020, pp. Art. No. 8, 14. MR 4116401
- Timothy Budd, Winding of simple walks on the square lattice, J. Combin. Theory Ser. A 172 (2020), 105191, 59. MR 4046317, DOI 10.1016/j.jcta.2019.105191
- Thomas Dreyfus, Differential algebraic generating series of weighted walks in the quarter plane, Preprint, arXiv:2104.05505, 2021.
- Thomas Dreyfus and Charlotte Hardouin, Length derivative of the generating function of walks confined in the quarter plane, Confluentes Math. 13 (2021), no. 2, 39–92. MR 4400899, DOI 10.5802/cml.77
- Thomas Dreyfus, Charlotte Hardouin, Julien Roques, and Michael F. Singer, On the nature of the generating series of walks in the quarter plane, Invent. Math. 213 (2018), no. 1, 139–203. MR 3815564, DOI 10.1007/s00222-018-0787-z
- Thomas Dreyfus, Charlotte Hardouin, Julien Roques, and Michael F. Singer, Walks in the quarter plane: genus zero case, J. Combin. Theory Ser. A 174 (2020), 105251, 25. MR 4080851, DOI 10.1016/j.jcta.2020.105251
- Thomas Dreyfus and Kilian Raschel, Differential transcendence & algebraicity criteria for the series counting weighted quadrant walks, Publications mathématiques de Besançon. Algèbre et théorie des nombres. 2019/1, Publ. Math. Besançon Algèbre Théorie Nr., vol. 2019/1, Presses Univ. Franche-Comté, Besançon, [2019] ©2019, pp. 41–80 (English, with English and French summaries). MR 4395008
- Thomas Dreyfus and Amélie Trotignon, On the nature of four models of symmetric walks avoiding a quadrant, Ann. Comb. 25 (2021), no. 3, 617–644. MR 4301585, DOI 10.1007/s00026-021-00541-8
- Andrew Elvey Price, Counting lattice walks by winding angle, Sém. Lothar. Combin. 84B (2020), Art. 43, 12. MR 4138671
- Andrew Elvey Price and Paul Zinn-Justin, The six-vertex model on random planar maps revisited, J. Combin. Theory Ser. A 196 (2023), Paper No. 105739, 32. MR 4547294, DOI 10.1016/j.jcta.2023.105739
- Guy Fayolle and Roudolf Iasnogorodski, Two coupled processors: the reduction to a Riemann-Hilbert problem, Z. Wahrsch. Verw. Gebiete 47 (1979), no. 3, 325–351. MR 525314, DOI 10.1007/BF00535168
- Guy Fayolle, Roudolf Iasnogorodski, and Vadim Malyshev, Random walks in the quarter-plane, Applications of Mathematics (New York), vol. 40, Springer-Verlag, Berlin, 1999. Algebraic methods, boundary value problems and applications. MR 1691900, DOI 10.1007/978-3-642-60001-2
- G. Fayolle and K. Raschel, On the holonomy or algebraicity of generating functions counting lattice walks in the quarter-plane, Markov Process. Related Fields 16 (2010), no. 3, 485–496. MR 2759770
- Charlotte Hardouin and Michael F. Singer, On differentially algebraic generating series for walks in the quarter plane, Selecta Math. (N.S.) 27 (2021), no. 5, Paper No. 89, 49. MR 4314247, DOI 10.1007/s00029-021-00703-9
- Irina Kurkova and Kilian Raschel, On the functions counting walks with small steps in the quarter plane, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 69–114. MR 3090255, DOI 10.1007/s10240-012-0045-7
- V. A. Malyšev, An analytic method in the theory of two-dimensional positive random walks, Sibirsk. Mat. Ž. 13 (1972), 1314–1329, 1421 (Russian). MR 336823
- Stephen Melczer and Marni Mishna, Singularity analysis via the iterated kernel method, Combin. Probab. Comput. 23 (2014), no. 5, 861–888. MR 3249228, DOI 10.1017/S0963548314000145
- Marni Mishna and Andrew Rechnitzer, Two non-holonomic lattice walks in the quarter plane, Theoret. Comput. Sci. 410 (2009), no. 38-40, 3616–3630. MR 2553316, DOI 10.1016/j.tcs.2009.04.008
- Sami Mustapha, Non-D-finite walks in a three-quadrant cone, Ann. Comb. 23 (2019), no. 1, 143–158. MR 3921340, DOI 10.1007/s00026-019-00413-2
- H. Poincaré, Mémoire sur les fonctions zétafuchsiennes, Acta Math. 5 (1884), no. 1, 209–278 (French). MR 1554656, DOI 10.1007/BF02421560
- Kilian Raschel, Counting walks in a quadrant: a unified approach via boundary value problems, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 3, 749–777. MR 2911883, DOI 10.4171/JEMS/317
- Kilian Raschel and Amélie Trotignon, On walks avoiding a quadrant, Electron. J. Combin. 26 (2019), no. 3, Paper No. 3.31, 34. MR 4014601, DOI 10.37236/8019
- Martin Rubey, Transcendence of generating functions of walks on the slit plane, Mathematics and computer science. III, Trends Math., Birkhäuser, Basel, 2004, pp. 49–58. MR 2090495
- Wolfgang M. Schmidt, Rational approximation to solutions of linear differential equations with algebraic coefficients, Proc. Amer. Math. Soc. 53 (1975), no. 2, 285–289. MR 387210, DOI 10.1090/S0002-9939-1975-0387210-2
Bibliographic Information
- Andrew Elvey Price
- Affiliation: CNRS, Institut Denis Poisson, Université de Tours, France
- MR Author ID: 986567
- Email: andrew.elvey@univ-tours.fr
- Received by editor(s): September 20, 2022
- Received by editor(s) in revised form: August 9, 2023
- Published electronically: March 5, 2025
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 3005-3084
- MSC (2020): Primary 05A15; Secondary 60G50, 33E05, 11J89, 05A19
- DOI: https://doi.org/10.1090/tran/9103