Scaling limits and universality: Critical percolation on weighted graphs converging to an $L^3$ graphon
HTML articles powered by AMS MathViewer
- by Jnaneshwar Baslingker, Shankar Bhamidi, Nicolas Broutin, Sanchayan Sen and Xuan Wang;
- Trans. Amer. Math. Soc. 378 (2025), 3157-3228
- DOI: https://doi.org/10.1090/tran/9267
- Published electronically: February 18, 2025
- HTML | PDF | Request permission
Abstract:
We develop a general universality technique for establishing metric scaling limits of critical random discrete structures exhibiting mean-field behavior that requires four ingredients: (i) from the barely subcritical regime to the critical window, components merge approximately like the multiplicative coalescent, (ii) asymptotics of the susceptibility functions are the same as that of the Erdős-Rényi random graph, (iii) asymptotic negligibility of the maximal component size and the diameter in the barely subcritical regime, and (iv) macroscopic averaging of distances between vertices in the barely subcritical regime.
As an application of the general universality theorem, we establish, under some regularity conditions, the critical percolation scaling limit of graphs that converge, in a suitable topology, to an $L^3$ graphon. In particular, we define a notion of the critical window in this setting. The $L^3$ assumption ensures that the model is in the Erdős-Rényi universality class and that the scaling limit is Brownian. Our results do not assume any specific functional form for the graphon. As a consequence of our results on graphons, we obtain the metric scaling limit for Aldous-Pittel’s RGIV model inside the critical window (see D.J. Aldous and B. Pittel [Random Structures Algorithms 17 (2000), pp. 79–102]).
Our universality principle has applications in a number of other problems including in the study of noise sensitivity of critical random graphs (see E. Lubetzky and Y. Peled [Israel J. Math. 252 (2022), pp. 187–214]). In Bhamidi et al. [Scaling limits and universality II: geometry of maximal components in dynamic random graph models in the critical regime, In preparation], we use our universality theorem to establish the metric scaling limit of critical bounded size rules. Our method should yield the critical metric scaling limit of Ruciński and Wormald’s random graph process with degree restrictions provided an additional technical condition about the barely subcritical behavior of this model can be proved (see A. Ruciński and N. C. Wormald [Combin. Probab. Comput. 1 (1992), pp. 169–180]).
References
- Romain Abraham, Jean-François Delmas, and Patrick Hoscheit, A note on the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces, Electron. J. Probab. 18 (2013), no. 14, 1–21.
- Louigi Addario-Berry, Shankar Bhamidi, and Sanchayan Sen, A probabilistic approach to the leader problem in random graphs, Random Structures Algorithms 58 (2021), no. 1, 34–67. MR 4180253, DOI 10.1002/rsa.20966
- L. Addario-Berry, N. Broutin, and C. Goldschmidt, Critical random graphs: limiting constructions and distributional properties, Electron. J. Probab. 15 (2010), no. 25, 741–775. MR 2650781, DOI 10.1214/EJP.v15-772
- L. Addario-Berry, N. Broutin, and C. Goldschmidt, The continuum limit of critical random graphs, Probab. Theory Related Fields 152 (2012), no. 3-4, 367–406. MR 2892951, DOI 10.1007/s00440-010-0325-4
- Louigi Addario-Berry, Nicolas Broutin, Christina Goldschmidt, and Grégory Miermont, The scaling limit of the minimum spanning tree of the complete graph, Ann. Probab. 45 (2017), no. 5, 3075–3144. MR 3706739, DOI 10.1214/16-AOP1132
- Louigi Addario-Berry and Sanchayan Sen, Geometry of the minimal spanning tree of a random 3-regular graph, Probab. Theory Related Fields 180 (2021), no. 3-4, 553–620. MR 4288328, DOI 10.1007/s00440-021-01071-3
- David Aldous, Brownian excursions, critical random graphs and the multiplicative coalescent, Ann. Probab. 25 (1997), no. 2, 812–854. MR 1434128, DOI 10.1214/aop/1024404421
- David Aldous, Grégory Miermont, and Jim Pitman, The exploration process of inhomogeneous continuum random trees, and an extension of Jeulin’s local time identity, Probab. Theory Related Fields 129 (2004), no. 2, 182–218. MR 2063375, DOI 10.1007/s00440-003-0334-7
- David J. Aldous and Boris Pittel, On a random graph with immigrating vertices: emergence of the giant component, Random Structures Algorithms 17 (2000), no. 2, 79–102. MR 1774745, DOI 10.1002/1098-2418(200009)17:2<79::aid-rsa1>3.0.co;2-w
- J. van den Berg and H. Kesten, Inequalities with applications to percolation and reliability, J. Appl. Probab. 22 (1985), no. 3, 556–569. MR 799280, DOI 10.1017/s0021900200029326
- Shankar Bhamidi, Nicolas Broutin, Sanchayan Sen, and Xuan Wang, Scaling limits and universality II: geometry of maximal components in dynamic random graph models in the critical regime, In preparation.
- Shankar Bhamidi, Souvik Dhara, Remco van der Hofstad, and Sanchayan Sen, Universality for critical heavy-tailed network models: metric structure of maximal components, Electron. J. Probab. 25 (2020), Paper No. 47, 57. MR 4092766, DOI 10.1214/19-ejp408
- Shankar Bhamidi, Souvik Dhara, Remco van der Hofstad, and Sanchayan Sen, Global lower mass-bound for critical configuration models in the heavy-tailed regime, Electron. J. Probab. 27 (2022), Paper No. 103, 29. MR 4460270, DOI 10.1214/22-ejp821
- Shankar Bhamidi, Remco van der Hofstad, and Sanchayan Sen, The multiplicative coalescent, inhomogeneous continuum random trees, and new universality classes for critical random graphs, Probab. Theory Related Fields 170 (2018), no. 1-2, 387–474. MR 3748328, DOI 10.1007/s00440-017-0760-6
- Shankar Bhamidi and Sanchayan Sen, Geometry of the vacant set left by random walk on random graphs, Wright’s constants, and critical random graphs with prescribed degrees, Random Structures Algorithms 56 (2020), no. 3, 676–721. MR 4084187, DOI 10.1002/rsa.20880
- Shankar Bhamidi and Sanchayan Sen, Geometry of the minimal spanning tree in the heavy-tailed regime: new universality classes, Probab. Theory Related Fields 188 (2024), no. 3-4, 729–804. MR 4716340, DOI 10.1007/s00440-024-01259-3
- Shankar Bhamidi, Sanchayan Sen, and Xuan Wang, Continuum limit of critical inhomogeneous random graphs, Probab. Theory Related Fields 169 (2017), no. 1-2, 565–641. MR 3704776, DOI 10.1007/s00440-016-0737-x
- Béla Bollobás, Christian Borgs, Jennifer Chayes, and Oliver Riordan, Percolation on dense graph sequences, Ann. Probab. 38 (2010), no. 1, 150–183. MR 2599196, DOI 10.1214/09-AOP478
- Béla Bollobás, Svante Janson, and Oliver Riordan, The phase transition in inhomogeneous random graphs, Random Structures Algorithms 31 (2007), no. 1, 3–122. MR 2337396, DOI 10.1002/rsa.20168
- Béla Bollobás, Svante Janson, and Oliver Riordan, The cut metric, random graphs, and branching processes, J. Stat. Phys. 140 (2010), no. 2, 289–335. MR 2659281, DOI 10.1007/s10955-010-9982-z
- C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi, Convergent sequences of dense graphs. I. Subgraph frequencies, metric properties and testing, Adv. Math. 219 (2008), no. 6, 1801–1851. MR 2455626, DOI 10.1016/j.aim.2008.07.008
- L.A. Braunstein, S.V. Buldyrev, R. Cohen, S. Havlin, and H.E. Stanley, Optimal paths in disordered complex networks, Phys. Rev. Lett. 91 (2003), no. 16, 168701., DOI 10.1103/PhysRevLett.91.168701
- Lidia A. Braunstein, Zhenhua Wu, Yiping Chen, Sergey V. Buldyrev, Tomer Kalisky, Sameet Sreenivasan, Reuven Cohen, Eduardo López, Shlomo Havlin, and H. Eugene Stanley, Optimal path and minimal spanning trees in random weighted networks, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 17 (2007), no. 7, 2215–2255. MR 2349740, DOI 10.1142/S0218127407018361
- Nicolas Broutin, Thomas Duquesne, and Minmin Wang, Limits of multiplicative inhomogeneous random graphs and Lévy trees: limit theorems, Probab. Theory Related Fields 181 (2021), no. 4, 865–973. MR 4344135, DOI 10.1007/s00440-021-01075-z
- Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001. MR 1835418, DOI 10.1090/gsm/033
- D. L. Burkholder, B. J. Davis, and R. F. Gundy, Integral inequalities for convex functions of operators on martingales, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, CA, 1972, pp. 223–240. MR 400380
- Duncan S Callaway, John E Hopcroft, Jon M Kleinberg, Mark EJ Newman, and Steven H Strogatz, Are randomly grown graphs really random?, Phys. Rev. E 64 (2001), no. 4, 041902., DOI 10.1103/PhysRevE.64.041902
- Michael Camarri and Jim Pitman, Limit distributions and random trees derived from the birthday problem with unequal probabilities, Electron. J. Probab. 5 (2000), no. 2, 18. MR 1741774, DOI 10.1214/EJP.v5-58
- Michael Capobianco and Ove Frank, Graph evolution by stochastic additions of points and lines, Discrete Math. 46 (1983), no. 2, 133–143. MR 710884, DOI 10.1016/0012-365X(83)90246-7
- Yiping Chen, Eduardo López, Shlomo Havlin, and H Eugene Stanley, Universal behavior of optimal paths in weighted networks with general disorder, Phys. Rev. Lett. 96 (2006), no. 6, 068702., DOI 10.1103/PhysRevLett.96.068702
- Guillaume Conchon-Kerjan and Christina Goldschmidt, The stable graph: the metric space scaling limit of a critical random graph with i.i.d. power-law degrees, Ann. Probab. 51 (2023), no. 1, 1–69. MR 4515689, DOI 10.1214/22-aop1587
- Souvik Dhara, Remco van der Hofstad, Johan S. H. van Leeuwaarden, and Sanchayan Sen, Critical window for the configuration model: finite third moment degrees, Electron. J. Probab. 22 (2017), Paper No. 16, 33. MR 3622886, DOI 10.1214/17-EJP29
- Souvik Dhara, Remco van der Hofstad, and Johan S. H. van Leeuwaarden, Critical percolation on scale-free random graphs: new universality class for the configuration model, Comm. Math. Phys. 382 (2021), no. 1, 123–171. MR 4223472, DOI 10.1007/s00220-021-03957-8
- Souvik Dhara, Remco van der Hofstad, Johan S. H. van Leeuwaarden, and Sanchayan Sen, Heavy-tailed configuration models at criticality, Ann. Inst. Henri Poincaré Probab. Stat. 56 (2020), no. 3, 1515–1558 (English, with English and French summaries). MR 4116701, DOI 10.1214/19-AIHP980
- Javier Duoandikoetxea, Fourier analysis, Graduate Studies in Mathematics, vol. 29, American Mathematical Society, Providence, RI, 2001. Translated and revised from the 1995 Spanish original by David Cruz-Uribe. MR 1800316, DOI 10.1090/gsm/029
- Rick Durrett, Rigorous result for the CHKNS random graph model, Discrete random walks (Paris, 2003) Discrete Math. Theor. Comput. Sci. Proc., AC, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2003, pp. 95–104. MR 2042377
- Steven N. Evans, Probability and real trees, Lecture Notes in Mathematics, vol. 1920, Springer, Berlin, 2008. Lectures from the 35th Summer School on Probability Theory held in Saint-Flour, July 6–23, 2005. MR 2351587, DOI 10.1007/978-3-540-74798-7
- Alan Frieze and Ravi Kannan, Quick approximation to matrices and applications, Combinatorica 19 (1999), no. 2, 175–220. MR 1723039, DOI 10.1007/s004930050052
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364, DOI 10.1007/978-3-642-61798-0
- Christina Goldschmidt, Bénédicte Haas, and Delphin Sénizergues, Stable graphs: distributions and line-breaking construction, Ann. H. Lebesgue 5 (2022), 841–904 (English, with English and French summaries). MR 4526241, DOI 10.5802/ahl.138
- Geoffrey Grimmett, Percolation, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 321, Springer-Verlag, Berlin, 1999. MR 1707339, DOI 10.1007/978-3-662-03981-6
- Markus Heydenreich and Remco van der Hofstad, Random graph asymptotics on high-dimensional tori, Comm. Math. Phys. 270 (2007), no. 2, 335–358. MR 2276449, DOI 10.1007/s00220-006-0152-8
- Markus Heydenreich and Remco van der Hofstad, Random graph asymptotics on high-dimensional tori II: volume, diameter and mixing time, Probab. Theory Related Fields 149 (2011), no. 3-4, 397–415. MR 2776620, DOI 10.1007/s00440-009-0258-y
- Wassily Hoeffding, The strong law of large numbers for U-statistics., 1961.
- Remco van der Hofstad, Random graphs and complex networks. Vol. 1, Cambridge Series in Statistical and Probabilistic Mathematics, [43], Cambridge University Press, Cambridge, 2017. MR 3617364, DOI 10.1017/9781316779422
- Remco van der Hofstad and Asaf Nachmias, Hypercube percolation, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 3, 725–814. MR 3612867, DOI 10.4171/JEMS/679
- Remco van der Hofstad and Artëm Sapozhnikov, Cycle structure of percolation on high-dimensional tori, Ann. Inst. Henri Poincaré Probab. Stat. 50 (2014), no. 3, 999–1027 (English, with English and French summaries). MR 3224297, DOI 10.1214/13-AIHP565
- Svante Janson, Asymptotic equivalence and contiguity of some random graphs, Random Structures Algorithms 36 (2010), no. 1, 26–45. MR 2591045, DOI 10.1002/rsa.20297
- Svante Janson, Graphons, cut norm and distance, couplings and rearrangements, New York Journal of Mathematics. NYJM Monographs, vol. 4, State University of New York, University at Albany, Albany, NY, 2013. MR 3043217
- Adrien Joseph, The component sizes of a critical random graph with given degree sequence, Ann. Appl. Probab. 24 (2014), no. 6, 2560–2594. MR 3262511, DOI 10.1214/13-AAP985
- Jerry L Kazdan, Matrices ${A}(t)$ depending on a parameter $t$, unpublished note (1995).
- Serge Lang, Fundamentals of differential geometry, Graduate Texts in Mathematics, vol. 191, Springer-Verlag, New York, 1999. MR 1666820, DOI 10.1007/978-1-4612-0541-8
- Jean-François Le Gall, Random trees and applications, Probab. Surv. 2 (2005), 245–311. MR 2203728, DOI 10.1214/154957805100000140
- Eyal Lubetzky and Yuval Peled, Noise sensitivity of critical random graphs, Israel J. Math. 252 (2022), no. 1, 187–214. MR 4526830, DOI 10.1007/s11856-022-2354-y
- Grégory Miermont and Sanchayan Sen, On breadth-first constructions of scaling limits of random graphs and random unicellular maps, Random Structures Algorithms 61 (2022), no. 4, 803–843. MR 4504844, DOI 10.1002/rsa.21076
- Jim Pitman, Random mappings, forests, and subsets associated with Abel-Cayley-Hurwitz multinomial expansions, Sém. Lothar. Combin. 46 (2001/02), Art. B46h, 45. MR 1877634
- David Reimer, Proof of the van den Berg-Kesten conjecture, Combin. Probab. Comput. 9 (2000), no. 1, 27–32. MR 1751301, DOI 10.1017/S0963548399004113
- Oliver Riordan, The phase transition in the configuration model, Combin. Probab. Comput. 21 (2012), no. 1-2, 265–299. MR 2900063, DOI 10.1017/S0963548311000666
- A. Ruciński and N. C. Wormald, Random graph processes with degree restrictions, Combin. Probab. Comput. 1 (1992), no. 2, 169–180. MR 1179247, DOI 10.1017/S0963548300000183
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- J. Spencer and N. Wormald, Birth control for giants, Combinatorica 27 (2007), no. 5, 587–628., DOI 10.1007/s00493-007-2163-2
- John L. Spouge, Solutions and critical times for the monodisperse coagulation equation when $a_{ij}=A+B(i+j)+Cij$, J. Phys. A 16 (1983), no. 4, 767–773. MR 706194, DOI 10.1088/0305-4470/16/4/014
- Lutz Warnke and Nick Wormald, Phase transition in evolving random graphs with bounded degrees, Draft (2022).
- Zhenhua Wu, Lidia A Braunstein, Shlomo Havlin, and H Eugene Stanley, Transport in weighted networks: partition into superhighways and roads, Phys. Rev. Lett. 96 (2006), no. 14, 148702., DOI 10.1103/PhysRevLett.96.148702
- Adriaan C. Zaanen, Introduction to operator theory in Riesz spaces, Springer-Verlag, Berlin, 1997. MR 1631533, DOI 10.1007/978-3-642-60637-3
Bibliographic Information
- Jnaneshwar Baslingker
- Affiliation: Department of Mathematics, Indian Institute of Science, Bengaluru, Karnataka 560012, India
- MR Author ID: 1547985
- ORCID: 0000-0001-6365-1263
- Shankar Bhamidi
- Affiliation: Department of Statistics and OR, University of North Carolina, Chapel Hill, North Carolina
- MR Author ID: 858854
- Nicolas Broutin
- Affiliation: LSPM, Sorbonne Université, France, and Institut Universitaire de France (IUF), France
- MR Author ID: 808981
- Sanchayan Sen
- Affiliation: Department of Mathematics, Indian Institute of Science, Bengaluru, Karnataka 560012, India
- MR Author ID: 1037262
- ORCID: 0000-0002-4481-6672
- Xuan Wang
- Affiliation: Databricks, San Francisco, California
- Received by editor(s): September 28, 2023
- Received by editor(s) in revised form: June 3, 2024
- Published electronically: February 18, 2025
- Additional Notes: The second author was partially supported by NSF-DMS grants 1613072, 1606839, and ARO grant W911NF-17-1-0010. The fourth author was supported in part by MATRICS grant MTR/2019/000745 from SERB, the DST FIST program - 2021 [TPN–700661], and by the Infosys Foundation, Bangalore.
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 3157-3228
- MSC (2020): Primary 60C05, 05C80
- DOI: https://doi.org/10.1090/tran/9267