Modified scattering for nonlinear Schrödinger equations with long-range potentials
HTML articles powered by AMS MathViewer
- by Masaki Kawamoto and Haruya Mizutani;
- Trans. Amer. Math. Soc. 378 (2025), 3625-3652
- DOI: https://doi.org/10.1090/tran/9369
- Published electronically: February 18, 2025
- HTML | PDF | Request permission
Abstract:
We study the final state problem for the nonlinear Schrödinger equation with a critical long-range nonlinearity and a long-range linear potential. Given a prescribed asymptotic profile which is different from the free evolution, we construct a unique global solution scattering to the profile. In particular, the existence of the modified wave operators is obtained for sufficiently localized small scattering data. The class of potential includes a repulsive long-range potential with a short-range perturbation, especially the positive Coulomb potential in two and three space dimensions. The asymptotic profile is constructed by combining Yafaev’s type linear modifier associated with the long-range part of the potential and the nonlinear modifier introduced by Ozawa. Finally, we also show that one can replace Yafaev’s type modifier by Dollard’s type modifier under a slightly stronger decay assumption on the long-range potential. This is the first positive result on the modified scattering for the nonlinear Schrödinger equation in the case when both of the nonlinear term and the linear potential are of long-range type.References
- Jacqueline E. Barab, Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation, J. Math. Phys. 25 (1984), no. 11, 3270–3273. MR 761850, DOI 10.1063/1.526074
- Marius Beceanu, New estimates for a time-dependent Schrödinger equation, Duke Math. J. 159 (2011), no. 3, 417–477. MR 2831875, DOI 10.1215/00127094-1433394
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 482275, DOI 10.1007/978-3-642-66451-9
- Thierry Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. MR 2002047, DOI 10.1090/cln/010
- Gong Chen and Fabio Pusateri, The 1-dimensional nonlinear Schrödinger equation with a weighted $L^{1}$ potential, Anal. PDE 15 (2022), no. 4, 937–982. MR 4478295, DOI 10.2140/apde.2022.15.937
- Jan Dereziński and Christian Gérard, Scattering theory of classical and quantum $N$-particle systems, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997. MR 1459161, DOI 10.1007/978-3-662-03403-3
- J. Dereziński and C. Gérard, Long-range scattering in the position representation, J. Math. Phys. 38 (1997), no. 8, 3925–3942. MR 1459635, DOI 10.1063/1.532079
- John D. Dollard, Asymptotic convergence and the Coulomb interaction, J. Mathematical Phys. 5 (1964), 729–738. MR 163620, DOI 10.1063/1.1704171
- Pierre Germain, Fabio Pusateri, and Frédéric Rousset, The nonlinear Schrödinger equation with a potential, Ann. Inst. H. Poincaré C Anal. Non Linéaire 35 (2018), no. 6, 1477–1530. MR 3846234, DOI 10.1016/j.anihpc.2017.12.002
- J. Ginibre and T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension $n\geq 2$, Comm. Math. Phys. 151 (1993), no. 3, 619–645. MR 1207269, DOI 10.1007/BF02097031
- J. Ginibre, T. Ozawa, and G. Velo, On the existence of the wave operators for a class of nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor. 60 (1994), no. 2, 211–239 (English, with English and French summaries). MR 1270296
- Michael Goldberg, Strichartz estimates for the Schrödinger equation with time-periodic $L^{n/2}$ potentials, J. Funct. Anal. 256 (2009), no. 3, 718–746. MR 2484934, DOI 10.1016/j.jfa.2008.11.005
- Nakao Hayashi and Pavel I. Naumkin, Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations, Amer. J. Math. 120 (1998), no. 2, 369–389. MR 1613646, DOI 10.1353/ajm.1998.0011
- Nakao Hayashi and Pavel I. Naumkin, Domain and range of the modified wave operator for Schrödinger equations with a critical nonlinearity, Comm. Math. Phys. 267 (2006), no. 2, 477–492. MR 2249776, DOI 10.1007/s00220-006-0057-6
- Nakao Hayashi, Huimei Wang, and Pavel I. Naumkin, Modified wave operators for nonlinear Schrödinger equations in lower order Sobolev spaces, J. Hyperbolic Differ. Equ. 8 (2011), no. 4, 759–775. MR 2864547, DOI 10.1142/S0219891611002561
- Lars Hörmander, The existence of wave operators in scattering theory, Math. Z. 146 (1976), no. 1, 69–91. MR 393884, DOI 10.1007/BF01213717
- Mihaela Ifrim and Daniel Tataru, Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension, Nonlinearity 28 (2015), no. 8, 2661–2675. MR 3382579, DOI 10.1088/0951-7715/28/8/2661
- Hiroshi Isozaki and Hitoshi Kitada, Modified wave operators with time-independent modifiers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32 (1985), no. 1, 77–104. MR 783182
- Jun Kato and Fabio Pusateri, A new proof of long-range scattering for critical nonlinear Schrödinger equations, Differential Integral Equations 24 (2011), no. 9-10, 923–940. MR 2850346
- Hans Lindblad and Avy Soffer, Scattering and small data completeness for the critical nonlinear Schrödinger equation, Nonlinearity 19 (2006), no. 2, 345–353. MR 2199392, DOI 10.1088/0951-7715/19/2/006
- Jeremy Marzuola, Jason Metcalfe, and Daniel Tataru, Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations, J. Funct. Anal. 255 (2008), no. 6, 1497–1553. MR 2565717, DOI 10.1016/j.jfa.2008.05.022
- Satoshi Masaki and Hayato Miyazaki, Long range scattering for nonlinear Schrödinger equations with critical homogeneous nonlinearity, SIAM J. Math. Anal. 50 (2018), no. 3, 3251–3270. MR 3815545, DOI 10.1137/17M1144829
- Satoshi Masaki, Hayato Miyazaki, and Kota Uriya, Long-range scattering for nonlinear Schrödinger equations with critical homogeneous nonlinearity in three space dimensions, Trans. Amer. Math. Soc. 371 (2019), no. 11, 7925–7947. MR 3955539, DOI 10.1090/tran/7636
- Satoshi Masaki, Jason Murphy, and Jun-Ichi Segata, Modified scattering for the one-dimensional cubic NLS with a repulsive delta potential, Int. Math. Res. Not. IMRN 24 (2019), 7577–7603. MR 4043829, DOI 10.1093/imrn/rny011
- Haruya Mizutani, Strichartz estimates for Schrödinger equations with slowly decaying potentials, J. Funct. Anal. 279 (2020), no. 12, 108789, 57. MR 4156128, DOI 10.1016/j.jfa.2020.108789
- Ivan Naumkin, Nonlinear Schrödinger equations with exceptional potentials, J. Differential Equations 265 (2018), no. 9, 4575–4631. MR 3843309, DOI 10.1016/j.jde.2018.06.016
- I. P. Naumkin, Sharp asymptotic behavior of solutions for cubic nonlinear Schrödinger equations with a potential, J. Math. Phys. 57 (2016), no. 5, 051501, 31. MR 3498293, DOI 10.1063/1.4948743
- Pavel I. Naumkin and Isahi Sánchez-Suárez, On the critical nongauge invariant nonlinear Schrödinger equation, Discrete Contin. Dyn. Syst. 30 (2011), no. 3, 807–834. MR 2784622, DOI 10.3934/dcds.2011.30.807
- Tohru Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension, Comm. Math. Phys. 139 (1991), no. 3, 479–493. MR 1121130, DOI 10.1007/BF02101876
- T. Ozawa, Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations 25 (2006), no. 3, 403–408. MR 2201679, DOI 10.1007/s00526-005-0349-2
- Michael Reed and Barry Simon, Methods of modern mathematical physics. III, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. Scattering theory. MR 529429
- Igor Rodnianski and Wilhelm Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math. 155 (2004), no. 3, 451–513. MR 2038194, DOI 10.1007/s00222-003-0325-4
- Jun-Ichi Segata, Final state problem for the cubic nonlinear Schrödinger equation with repulsive delta potential, Comm. Partial Differential Equations 40 (2015), no. 2, 309–328. MR 3277928, DOI 10.1080/03605302.2014.930753
- W. Strauss, Nonlinear scattering theory, Scattering theory in mathematical physics, 1974, pp. 53–78.
- Kouichi Taira, A remark on Strichartz estimates for Schrödinger equations with slowly decaying potentials, Proc. Amer. Math. Soc. 150 (2022), no. 9, 3953–3958. MR 4446243, DOI 10.1090/proc/15954
- Yoshio Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac. 30 (1987), no. 1, 115–125. MR 915266
- Yoshio Tsutsumi and Kenji Yajima, The asymptotic behavior of nonlinear Schrödinger equations, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 186–188. MR 741737, DOI 10.1090/S0273-0979-1984-15263-7
- D. R. Jafaev, Wave operators for the Schrödinger equation, Teoret. Mat. Fiz. 45 (1980), no. 2, 224–234 (Russian). MR 604521
Bibliographic Information
- Masaki Kawamoto
- Affiliation: Research Institute for Interdisciplinary Science, Okayama University, 3-1-1, Tsushimanaka, Kita-ku, Okayama City, Okayama 700-8530, Japan
- MR Author ID: 991073
- ORCID: 0000-0002-2800-6207
- Email: kawamoto.masaki@okayama-u.ac.jp
- Haruya Mizutani
- Affiliation: Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- MR Author ID: 917770
- ORCID: 0000-0002-2685-048X
- Email: haruya@math.sci.osaka-u.ac.jp
- Received by editor(s): September 3, 2023
- Received by editor(s) in revised form: June 30, 2024, September 9, 2024, and October 31, 2024
- Published electronically: February 18, 2025
- Additional Notes: The first author was partially supported by JSPS KAKENHI Grant Number 20K14328 and 24K06796. The second author was partially supported by JSPS KAKENHI Grant Number JP21K03325.
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 3625-3652
- MSC (2020): Primary 35Q55, 35P25
- DOI: https://doi.org/10.1090/tran/9369