Isomorphisms in K-theory from isomorphisms in groupoid homology theories
HTML articles powered by AMS MathViewer
- by Alistair Miller;
- Trans. Amer. Math. Soc. 378 (2025), 3349-3391
- DOI: https://doi.org/10.1090/tran/9373
- Published electronically: January 30, 2025
- HTML | PDF
Abstract:
We prove that for torsion-free amenable ample groupoids, an isomorphism in groupoid homology induced by an étale correspondence yields an isomorphism in the K-theory of the associated $\mathrm {C}^\ast$-algebras. We apply this to extend X. Li’s K-theory formula for left regular inverse semigroup $\mathrm {C}^\ast$-algebras. These results are obtained by developing the functoriality of the ABC spectral sequence.References
- Celso Antunes, Joanna Ko, and Ralf Meyer, The bicategory of groupoid correspondences, New York J. Math. 28 (2022), 1329–1364. MR 4489452
- Paul Baum, Alain Connes, and Nigel Higson, Classifying space for proper actions and $K$-theory of group $C^\ast$-algebras, $C^\ast$-algebras: 1943–1993 (San Antonio, TX, 1993) Contemp. Math., vol. 167, Amer. Math. Soc., Providence, RI, 1994, pp. 240–291. MR 1292018, DOI 10.1090/conm/167/1292018
- Christian Bönicke, A going-down principle for ample groupoids and the Baum-Connes conjecture, Adv. Math. 372 (2020), 107314, 73. MR 4128575, DOI 10.1016/j.aim.2020.107314
- Christian Bönicke, Clément Dell’Aiera, James Gabe, and Rufus Willett, Dynamic asymptotic dimension and Matui’s HK conjecture, Proc. Lond. Math. Soc. (3) 126 (2023), no. 4, 1182–1253. MR 4574829, DOI 10.1112/plms.12510
- Christian Bönicke and Valerio Proietti, A categorical approach to the Baum-Connes conjecture for étale groupoids, J. Inst. Math. Jussieu 23 (2024), no. 5, 2319–2364. MR 4821559, DOI 10.1017/S1474748023000531
- J. Chabert, S. Echterhoff, and H. Oyono-Oyono, Going-down functors, the Künneth formula, and the Baum-Connes conjecture, Geom. Funct. Anal. 14 (2004), no. 3, 491–528. MR 2100669, DOI 10.1007/s00039-004-0467-6
- Joachim Cuntz, Siegfried Echterhoff, and Xin Li, On the $K$-theory of crossed products by automorphic semigroup actions, Q. J. Math. 64 (2013), no. 3, 747–784. MR 3094498, DOI 10.1093/qmath/hat021
- Joachim Cuntz, Siegfried Echterhoff, and Xin Li, On the K-theory of the C*-algebra generated by the left regular representation of an Ore semigroup, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 3, 645–687. MR 3323201, DOI 10.4171/JEMS/513
- Joachim Cuntz, Siegfried Echterhoff, Xin Li, and Guoliang Yu, $K$-theory for group $C^*$-algebras and semigroup $C^*$-algebras, Oberwolfach Seminars, vol. 47, Birkhäuser/Springer, Cham, 2017. MR 3618901, DOI 10.1007/978-3-319-59915-1
- Robin J. Deeley, A counterexample to the HK-conjecture that is principal, Ergodic Theory Dynam. Systems 43 (2023), no. 6, 1829–1846. MR 4583796, DOI 10.1017/etds.2022.25
- Carla Farsi, Alex Kumjian, David Pask, and Aidan Sims, Ample groupoids: equivalence, homology, and Matui’s HK conjecture, Münster J. Math. 12 (2019), no. 2, 411–451. MR 4030921, DOI 10.17879/53149724091
- James Fletcher, Iterating the Cuntz-Nica-Pimsner construction for compactly aligned product systems, New York J. Math. 24 (2018), 739–814. MR 3861035
- Thierry Giordano, Ian F. Putnam, and Christian F. Skau, Topological orbit equivalence and $C^*$-crossed products, J. Reine Angew. Math. 469 (1995), 51–111. MR 1363826
- Guihua Gong, Huaxin Lin, and Zhuang Niu, A classification of finite simple amenable $\mathcal Z$-stable $C^\ast$-algebras, I: $C^\ast$-algebras with generalized tracial rank one, C. R. Math. Acad. Sci. Soc. R. Can. 42 (2020), no. 3, 63–450 (English, with English and French summaries). MR 4215379
- N. Higson, V. Lafforgue, and G. Skandalis, Counterexamples to the Baum-Connes conjecture, Geom. Funct. Anal. 12 (2002), no. 2, 330–354. MR 1911663, DOI 10.1007/s00039-002-8249-5
- Eberhard Kirchberg, Exact $\textrm {C}^*$-algebras, tensor products, and the classification of purely infinite algebras, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 943–954. MR 1403994
- Xin Li, Every classifiable simple $\rm C^*$-algebra has a Cartan subalgebra, Invent. Math. 219 (2020), no. 2, 653–699. MR 4054809, DOI 10.1007/s00222-019-00914-0
- Xin Li, K-theory for semigroup $\rm C^*$-algebras and partial crossed products, Comm. Math. Phys. 390 (2022), no. 1, 1–32. MR 4381183, DOI 10.1007/s00220-021-04194-9
- Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR 1344215
- Hiroki Matui, Homology and topological full groups of étale groupoids on totally disconnected spaces, Proc. Lond. Math. Soc. (3) 104 (2012), no. 1, 27–56. MR 2876963, DOI 10.1112/plms/pdr029
- Hiroki Matui, Topological full groups of one-sided shifts of finite type, J. Reine Angew. Math. 705 (2015), 35–84. MR 3377390, DOI 10.1515/crelle-2013-0041
- Hiroki Matui, Étale groupoids arising from products of shifts of finite type, Adv. Math. 303 (2016), 502–548. MR 3552533, DOI 10.1016/j.aim.2016.08.023
- Ralf Meyer, Homological algebra in bivariant $K$-theory and other triangulated categories. II, Tbil. Math. J. 1 (2008), 165–210. MR 2563811
- Ralf Meyer and Ryszard Nest, The Baum-Connes conjecture via localisation of categories, Topology 45 (2006), no. 2, 209–259. MR 2193334, DOI 10.1016/j.top.2005.07.001
- Ralf Meyer and Ryszard Nest, Homological algebra in bivariant $K$-theory and other triangulated categories. I, Triangulated categories, London Math. Soc. Lecture Note Ser., vol. 375, Cambridge Univ. Press, Cambridge, 2010, pp. 236–289. MR 2681710
- Ralf Meyer and Chenchang Zhu, Groupoids in categories with pretopology, Theory Appl. Categ. 30 (2015), Paper No. 55, 1906–1998. MR 3438234
- Alistair Miller, Functors between Kasparov categories from étale groupoid correspondences, J. Funct. Anal. 287 (2024), no. 11, Paper No. 110623, 48. MR 4788682, DOI 10.1016/j.jfa.2024.110623
- Alistair Miller, Ample groupoid homology and étale correspondences, J. Noncommut. Geom., To appear, arXiv:2304.13473, 2024.
- Guido Mislin, Equivariant $K$-homology of the classifying space for proper actions, Proper group actions and the Baum-Connes conjecture, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel, 2003, pp. 1–78. MR 2027169
- David Pask, John Quigg, and Iain Raeburn, Fundamental groupoids of $k$-graphs, New York J. Math. 10 (2004), 195–207. MR 2114786
- N. Christopher Phillips, A classification theorem for nuclear purely infinite simple $C^*$-algebras, Doc. Math. 5 (2000), 49–114. MR 1745197, DOI 10.4171/dm/75
- Valerio Proietti and Makoto Yamashita, Homology and $K$-theory of dynamical systems I. Torsion-free ample groupoids, Ergodic Theory Dynam. Systems 42 (2022), no. 8, 2630–2660. MR 4448401, DOI 10.1017/etds.2021.50
- Valerio Proietti and Makoto Yamashita, Homology and K-theory of dynamical systems IV. Further structural results on groupoid homology, Preprint, arXiv:2310.09928. 2023.
- Jean Renault, Cartan subalgebras in $C^*$-algebras, Irish Math. Soc. Bull. 61 (2008), 29–63. MR 2460017, DOI 10.33232/BIMS.0061.29.63
- Eduardo Scarparo, Homology of odometers, Ergodic Theory Dynam. Systems 40 (2020), no. 9, 2541–2551. MR 4130816, DOI 10.1017/etds.2019.13
- Benjamin Steinberg, A groupoid approach to discrete inverse semigroup algebras, Adv. Math. 223 (2010), no. 2, 689–727. MR 2565546, DOI 10.1016/j.aim.2009.09.001
- Aaron Tikuisis, Stuart White, and Wilhelm Winter, Quasidiagonality of nuclear $C^\ast$-algebras, Ann. of Math. (2) 185 (2017), no. 1, 229–284. MR 3583354, DOI 10.4007/annals.2017.185.1.4
- Jean-Louis Tu, La conjecture de Baum-Connes pour les feuilletages moyennables, $K$-Theory 17 (1999), no. 3, 215–264 (French, with English and French summaries). MR 1703305, DOI 10.1023/A:1007744304422
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
- Wilhelm Winter, Structure of nuclear $\rm C^*$-algebras: from quasidiagonality to classification and back again, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. III. Invited lectures, World Sci. Publ., Hackensack, NJ, 2018, pp. 1801–1823. MR 3966830
Bibliographic Information
- Alistair Miller
- Affiliation: Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
- MR Author ID: 1628316
- ORCID: 0000-0002-7895-6323
- Email: mil@sdu.dk
- Received by editor(s): May 3, 2024
- Received by editor(s) in revised form: October 4, 2024
- Published electronically: January 30, 2025
- Additional Notes: This work contains part of the author’s PhD thesis, which was supported by the Engineering and Physical Sciences Research Council (EPSRC) through a doctoral studentship. The author has also been supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 817597) and by the Independent Research Fund Denmark through the Grant 1054-00094B
- © Copyright 2025 by Alistair Miller
- Journal: Trans. Amer. Math. Soc. 378 (2025), 3349-3391
- MSC (2020): Primary 46L80, 18G80; Secondary 19K35, 20J05
- DOI: https://doi.org/10.1090/tran/9373