Bernstein-Gelfand-Gelfand meets geometric complexity theory: resolving the $\mathbf {2 \times 2}$ permanents of a $\mathbf {2 \times n}$ matrix
HTML articles powered by AMS MathViewer
- by Fulvio Gesmundo, Hang (Amy) Huang, Hal Schenck and Jerzy Weyman;
- Trans. Amer. Math. Soc. 378 (2025), 3573-3596
- DOI: https://doi.org/10.1090/tran/9376
- Published electronically: January 22, 2025
- HTML | PDF | Request permission
Abstract:
We describe the minimal free resolution of the ideal of $2 \times 2$ subpermanents of a $2 \times n$ generic matrix $M$. In contrast to the case of $2 \times 2$ determinants, the $2 \times 2$ permanents define an ideal which is neither prime nor Cohen-Macaulay. We combine work of Laubenbacher-Swanson [J. Symbolic Comput. 30 (2000), pp. 195–205] on the Gröbner basis of an ideal of $2 \times 2$ permanents of a generic matrix with our previous work of Efremenko et al. [J. Algebra 503 (2018), pp. 8–20] connecting the initial ideal of $2 \times 2$ permanents to a simplicial complex. The main technical tool is a spectral sequence arising from the Bernstein-Gelfand-Gelfand correspondence.References
- N. Alon and M. Tarsi, Colorings and orientations of graphs, Combinatorica 12 (1992), no. 2, 125–134. \PrintDOI{10.1007/BF01204715}
- Dave Bayer, Hara Charalambous, and Sorin Popescu, Extremal Betti numbers and applications to monomial ideals, J. Algebra 221 (1999), no. 2, 497–512. MR 1726711, DOI 10.1006/jabr.1999.7970
- Jarosław Buczyński, Adam Ginensky, and J. M. Landsberg, Determinantal equations for secant varieties and the Eisenbud-Koh-Stillman conjecture, J. Lond. Math. Soc. (2) 88 (2013), no. 1, 1–24. MR 3092255, DOI 10.1112/jlms/jds073
- Peter Bürgisser, Christian Ikenmeyer, and Greta Panova, No occurrence obstructions in geometric complexity theory, J. Amer. Math. Soc. 32 (2019), no. 1, 163–193. MR 3868002, DOI 10.1090/jams/908
- P. Bürgisser, J. M. Landsberg, L. Manivel, and J. Weyman, An overview of mathematical issues arising in the Geometric Complexity Theory approach to $VP \neq VNP$, SIAM J. Comput. 40 (2011), no. 4, 1179–1209. \PrintDOI{10.1137/090765328}
- Mats Boij and Zach Teitler, A bound for the Waring rank of the determinant via syzygies, Linear Algebra Appl. 587 (2020), 195–214. MR 4031710, DOI 10.1016/j.laa.2019.11.007
- David Eisenbud and Joe Harris, The geometry of schemes, Graduate Texts in Mathematics, vol. 197, Springer-Verlag, New York, 2000. MR 1730819
- D. Eisenbud, Linear sections of determinantal varieties, Amer. J. Math. 110 (1988), no. 3, 541–575. \PrintDOI{10.2307/2374622}
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- David Eisenbud, The geometry of syzygies, Graduate Texts in Mathematics, vol. 229, Springer-Verlag, New York, 2005. A second course in commutative algebra and algebraic geometry. MR 2103875
- Klim Efremenko, J. M. Landsberg, Hal Schenck, and Jerzy Weyman, On minimal free resolutions of sub-permanents and other ideals arising in complexity theory, J. Algebra 503 (2018), 8–20. MR 3779986, DOI 10.1016/j.jalgebra.2018.01.021
- J. A. Eagon and D. G. Northcott, Ideals defined by matrices and a certain complex associated with them, Proc. Roy. Soc. London Ser. A 269 (1962), 188–204. MR 142592, DOI 10.1098/rspa.1962.0170
- John A. Eagon and Victor Reiner, Resolutions of Stanley-Reisner rings and Alexander duality, J. Pure Appl. Algebra 130 (1998), no. 3, 265–275. MR 1633767, DOI 10.1016/S0022-4049(97)00097-2
- William Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. MR 1464693
- Fulvio Gesmundo, Christian Ikenmeyer, and Greta Panova, Geometric complexity theory and matrix powering, Differential Geom. Appl. 55 (2017), 106–127. MR 3724215, DOI 10.1016/j.difgeo.2017.07.001
- Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi, Arithmetic circuits: a chasm at depth three, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science—FOCS 2013, IEEE Computer Soc., Los Alamitos, CA, 2013, pp. 578–587. MR 3246261, DOI 10.1109/FOCS.2013.68
- Fulvio Gesmundo and Joseph M. Landsberg, Explicit polynomial sequences with maximal spaces of partial derivatives and a question of K. Mulmuley, Theory Comput. 15 (2019), Paper No. 3, 24. MR 4003839, DOI 10.4086/toc.2019.v015a003
- M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials,and polytopes, Ann. Math. 96 (1972), 318–337.
- Christian Ikenmeyer and J. M. Landsberg, On the complexity of the permanent in various computational models, J. Pure Appl. Algebra 221 (2017), no. 12, 2911–2927. MR 3666732, DOI 10.1016/j.jpaa.2017.02.008
- Christian Ikenmeyer and Greta Panova, Rectangular Kronecker coefficients and plethysms in geometric complexity theory, Adv. Math. 319 (2017), 40–66. MR 3695867, DOI 10.1016/j.aim.2017.08.024
- George A. Kirkup, Minimal primes over permanental ideals, Trans. Amer. Math. Soc. 360 (2008), no. 7, 3751–3770. MR 2386244, DOI 10.1090/S0002-9947-08-04340-7
- J. M. Landsberg, Geometry and complexity theory, Cambridge Studies in Advanced Mathematics, vol. 169, Cambridge University Press, Cambridge, 2017. MR 3729273, DOI 10.1017/9781108183192
- Alain Lascoux, Syzygies des variétés déterminantales, Adv. in Math. 30 (1978), no. 3, 202–237 (French). MR 520233, DOI 10.1016/0001-8708(78)90037-3
- Reinhard C. Laubenbacher and Irena Swanson, Permanental ideals, J. Symbolic Comput. 30 (2000), no. 2, 195–205. MR 1777172, DOI 10.1006/jsco.2000.0363
- K. D. Mulmuley, H. Narayanan, and M. Sohoni, Geometric complexity theory III: on deciding nonvanishing of a Littlewood–Richardson coefficient, J. Alg. Combinatorics 36 (2012), no. 1, 103–110.
- K. D. Mulmuley and M. Sohoni, Geometric Complexity Theory. I. An approach to the P vs. NP and related problems, SIAM J. Comput. 31 (2001), no. 2, 496–526 (electronic).
- Ezra Miller and Bernd Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005. MR 2110098
- K. D. Mulmuley and M. Sohoni, Geometric Complexity Theory. II. Towards explicit obstructions for embeddings among class varieties, SIAM J. Comput. 38 (2008), no. 3, 1175–1206. \PrintDOI{10.1137/080718115}
- Gerald Allen Reisner, Cohen-Macaulay quotients of polynomial rings, Advances in Math. 21 (1976), no. 1, 30–49. MR 407036, DOI 10.1016/0001-8708(76)90114-6
- Hal Schenck, Computational algebraic geometry, London Mathematical Society Student Texts, vol. 58, Cambridge University Press, Cambridge, 2003. MR 2011360, DOI 10.1017/CBO9780511756320
- Hal Schenck, Algebraic foundations for applied topology and data analysis, Mathematics of Data, vol. 1, Springer, Cham, [2022] ©2022. MR 4559594, DOI 10.1007/978-3-031-06664-1
- Jessica Sidman and Gregory G. Smith, Linear determinantal equations for all projective schemes, Algebra Number Theory 5 (2011), no. 8, 1041–1061. MR 2948471, DOI 10.2140/ant.2011.5.1041
- L. G. Valiant, Completeness classes in algebra, In Proceedings of the 11th ACM Symposium on Theory of Computing, STOC ’79, ACM, New York, 1979, pp. 249–261.
- Günter M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995. MR 1311028, DOI 10.1007/978-1-4613-8431-1
Bibliographic Information
- Fulvio Gesmundo
- Affiliation: Institut de Mathématiques de Toulouse; UMR5219 – Université de Toulouse; and CNRS – UPS, F-31062 Toulouse Cedex 9, France
- MR Author ID: 1040768
- ORCID: 0000-0001-6402-021X
- Email: fgesmund@math.univ-toulouse.fr
- Hang (Amy) Huang
- Affiliation: Department of Mathematics, Auburn University, Auburn, Alabama
- MR Author ID: 1346345
- Email: hzh0105@auburn.edu
- Hal Schenck
- Affiliation: Department of Mathematics, Auburn University, Auburn, Alabama
- MR Author ID: 621581
- ORCID: 0000-0002-1692-7500
- Email: hks0015@auburn.edu
- Jerzy Weyman
- Affiliation: Department of Mathematics, Jagiellonian University, Kraków, Poland
- MR Author ID: 182230
- ORCID: 0000-0003-1923-0060
- Email: jerzy.weyman@uj.edu.pl
- Received by editor(s): March 3, 2024
- Received by editor(s) in revised form: October 29, 2024
- Published electronically: January 22, 2025
- Additional Notes: The third author was supported by NSF DMS-2006410
The last author was supported by MAESTRO NCN - UMO-2019/34/A/ST1/00263 - Research in Commutative Algebra and Representation Theory, NAWA POWROTY - PPN/PPO/2018/1/00013/U/00001 - Applications of Lie algebras to Commutative Algebra, and OPUS grant National Science Centre, Poland grant UMO-2018/29/BST1/01290 - © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 3573-3596
- MSC (2020): Primary 13D02, 13F55, 13C40, 68Q15
- DOI: https://doi.org/10.1090/tran/9376