Hypersurfaces with large automorphism groups
HTML articles powered by AMS MathViewer
- by Louis Esser and Jennifer Li;
- Trans. Amer. Math. Soc. 378 (2025), 3667-3698
- DOI: https://doi.org/10.1090/tran/9383
- Published electronically: January 22, 2025
- HTML | PDF | Request permission
Abstract:
We find sharp upper bounds on the order of the automorphism group of a hypersurface in complex projective space in every dimension and degree. In each case, we prove that the hypersurface realizing the upper bound is unique up to isomorphism and provide explicit generators for the automorphism group.References
- Michela Artebani and Igor Dolgachev, The Hesse pencil of plane cubic curves, Enseign. Math. (2) 55 (2009), no. 3-4, 235–273. MR 2583779, DOI 10.4171/LEM/55-3-3
- H. F. Blichfeldt. Finite collineation groups. The Univ. Chicago Press, Chicago, 1917.
- Samuel Boissière and Alessandra Sarti, Counting lines on surfaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), no. 1, 39–52. MR 2341513
- Araceli Bonifant and John Milnor, On real and complex cubic curves, Enseign. Math. 63 (2017), no. 1-2, 21–61. MR 3777131, DOI 10.4171/LEM/63-1/2-2
- Richard Brauer, Über endliche lineare Gruppen von Primzahlgrad, Math. Ann. 169 (1967), 73–96 (German). MR 206088, DOI 10.1007/BF01399532
- H. C. Chang, On plane algebraic curves, Chinese J. Math. 6 (1978), no. 2, 185–189. MR 529972
- Michael J. Collins, Bounds for finite primitive complex linear groups, J. Algebra 319 (2008), no. 2, 759–776. MR 2381807, DOI 10.1016/j.jalgebra.2005.11.042
- Michael J. Collins, On Jordan’s theorem for complex linear groups, J. Group Theory 10 (2007), no. 4, 411–423. MR 2334748, DOI 10.1515/JGT.2007.032
- I. Dolgachev and A. Duncan, Automorphisms of cubic surfaces in positive characteristic, Izv. Ross. Akad. Nauk Ser. Mat. 83 (2019), no. 3, 15–92; English transl., Izv. Math. 83 (2019), no. 3, 424–500. MR 3954305, DOI 10.4213/im8803
- David Eisenbud and Joe Harris, 3264 and all that—a second course in algebraic geometry, Cambridge University Press, Cambridge, 2016. MR 3617981, DOI 10.1017/CBO9781139062046
- Louis Esser, Automorphisms of weighted projective hypersurfaces, J. Pure Appl. Algebra 228 (2024), no. 6, Paper No. 107628, 21. MR 4697991, DOI 10.1016/j.jpaa.2024.107628
- W. Feit, On finite linear groups of degree at most 10. In: W.R. Scott, F. Gross (Eds.), Proceedings of the Conference on Finite Groups, Academic Press, New York, 1976.
- Walter Feit, The current situation in the theory of finite simple groups, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars Éditeur, Paris, 1971, pp. 55–93. MR 427449
- Alexander Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux $(SGA$ $2)$, Advanced Studies in Pure Mathematics, Vol. 2, North-Holland Publishing Co., Amsterdam; Masson & Cie, Editeur, Paris, 1968 (French). Augmenté d’un exposé par Michèle Raynaud; Séminaire de Géométrie Algébrique du Bois-Marie, 1962. MR 476737
- Takeshi Harui, Automorphism groups of smooth plane curves, Kodai Math. J. 42 (2019), no. 2, 308–331. MR 3981307, DOI 10.2996/kmj/1562032832
- Bas Heijne, Picard numbers of Delsarte surfaces, J. Math. Soc. Japan 68 (2016), no. 1, 101–118. MR 3454555, DOI 10.2969/jmsj/06810101
- Alan Howard and Andrew John Sommese, On the orders of the automorphism groups of certain projective manifolds, Manifolds and Lie groups (Notre Dame, Ind., 1980) Progr. Math., vol. 14, Birkhäuser, Boston, MA, 1981, pp. 145–158. MR 642855
- W. C. Huffman and D. B. Wales, Linear groups of degree eight with no elements of order seven, Illinois J. Math. 20 (1976), no. 3, 519–527. MR 409678, DOI 10.1215/ijm/1256049793
- M. Camille Jordan, Mémoire sur les équations différentielles linéaires à intégrale algébrique, J. Reine Angew. Math. 84 (1878), 89–215. MR 1581645, DOI 10.1515/crelle-1878-18788408
- Felix Klein, Ueber die Transformation siebenter Ordnung der elliptischen Functionen, Math. Ann. 14 (1878), no. 3, 428–471 (German). MR 1509988, DOI 10.1007/BF01677143
- Felix Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Birkhäuser Verlag, Basel; B. G. Teubner, Stuttgart, 1993 (German, with German summary). Reprint of the 1884 original; Edited, with an introduction and commentary by Peter Slodowy. MR 1315530, DOI 10.1007/978-3-0348-8594-2
- Aristides Kontogeorgis, Automorphisms of Fermat-like varieties, Manuscripta Math. 107 (2002), no. 2, 187–205. MR 1894739, DOI 10.1007/s002290100233
- J. H. Lindsey II, Finite linear groups of degree six, Canadian J. Math. 23 (1971), 771–790. MR 289665, DOI 10.4153/CJM-1971-086-x
- J. H. Lindsey II, On a six-dimensional projective representation of $\textrm {PSU}_{4}(3)$, Pacific J. Math. 36 (1971), 407–425. MR 285628, DOI 10.2140/pjm.1971.36.407
- Radu Laza and Zhiwei Zheng, Automorphisms and periods of cubic fourfolds, Math. Z. 300 (2022), no. 2, 1455–1507. MR 4363785, DOI 10.1007/s00209-021-02810-x
- Hideyuki Matsumura and Paul Monsky, On the automorphisms of hypersurfaces, J. Math. Kyoto Univ. 3 (1963/64), 347–361. MR 168559, DOI 10.1215/kjm/1250524785
- G. A. Miller, H. F. Blichfeldt, and L. E. Dickson, Theory and applications of finite groups, Dover Publications, Inc., New York, 1961. MR 123600
- Shigeru Mukai, An introduction to invariants and moduli, Cambridge Studies in Advanced Mathematics, vol. 81, Cambridge University Press, Cambridge, 2003. Translated from the 1998 and 2000 Japanese editions by W. M. Oxbury. MR 2004218, DOI 10.1017/CBO9781316257074
- Keiji Oguiso and Xun Yu, Automorphism groups of smooth quintic threefolds, Asian J. Math. 23 (2019), no. 2, 201–256. MR 3978250, DOI 10.4310/AJM.2019.v23.n2.a2
- Fernanda Pambianco, Characterization of the Fermat curve as the most symmetric nonsingular algebraic plane curve, Math. Z. 277 (2014), no. 3-4, 975–993. MR 3229975, DOI 10.1007/s00209-014-1288-4
- V. L. Popov and E. B. Vinberg, Invariant theory, Algebraic Geometry IV: Linear Algebraic Groups Invariant Theory, Springer Berlin Heidelberg, Berlin, Heidelberg, 1994, pp. 123–278.
- Yuri Prokhorov and Constantin Shramov, Jordan constant for Cremona group of rank 3, Mosc. Math. J. 17 (2017), no. 3, 457–509. MR 3711004, DOI 10.17323/1609-4514-2017-17-3-457-509
- J. A. Todd, The invariants of a finite collineation group in five dimensions, Proc. Cambridge Philos. Soc. 46 (1950), 73–90. MR 34382, DOI 10.1017/s0305004100025494
- Tetsuji Shioda, Arithmetic and geometry of Fermat curves, Algebraic Geometry Seminar (Singapore, 1987) World Sci. Publishing, Singapore, 1988, pp. 95–102. MR 966448
- David Wales, Quasiprimitive linear groups with quadratic elements, J. Algebra 245 (2001), no. 2, 584–606. MR 1863893, DOI 10.1006/jabr.2001.8935
- Li Wei and Xun Yu, Automorphism groups of smooth cubic threefolds, J. Math. Soc. Japan 72 (2020), no. 4, 1327–1343. MR 4165935, DOI 10.2969/jmsj/83088308
- A. Wiman, Ueber eine einfache Gruppe von 360 ebenen Collineationen, Math. Ann. 47 (1896), no. 4, 531–556 (German). MR 1510914, DOI 10.1007/BF01445800
- Song Yang, Xun Yu, and Zigang Zhu, Automorphism groups of cubic fivefolds and fourfolds, J. Lond. Math. Soc. (2) 110 (2024), no. 4, Paper No. e12997, 35. MR 4801899, DOI 10.1112/jlms.12997
- S. Yang, X. Yu, and Z. Zhu, On automorphism groups of smooth hypersurfaces, arXiv:2405.09505, 2024.
Bibliographic Information
- Louis Esser
- Affiliation: Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, New Jersey 08544-1000
- MR Author ID: 1491708
- ORCID: 0000-0002-1958-3029
- Email: esserl@math.princeton.edu
- Jennifer Li
- Affiliation: Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, New Jersey 08544-1000
- MR Author ID: 1577699
- ORCID: 0000-0003-4123-886X
- Email: jenniferli@princeton.edu
- Received by editor(s): June 25, 2024
- Received by editor(s) in revised form: November 22, 2024, and November 26, 2024
- Published electronically: January 22, 2025
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 3667-3698
- MSC (2020): Primary 14J50, 14J70
- DOI: https://doi.org/10.1090/tran/9383