The double and triple bubble problem for stationary varifolds: The convex case
HTML articles powered by AMS MathViewer
- by Antonio De Rosa and Riccardo Tione;
- Trans. Amer. Math. Soc. 378 (2025), 3393-3444
- DOI: https://doi.org/10.1090/tran/9400
- Published electronically: February 11, 2025
- HTML | PDF | Request permission
Abstract:
We characterize the critical points of the double bubble problem in $\mathbb {R}^n$ and the triple bubble problem in $\mathbb {R}^3$, in the case the bubbles are convex.References
- S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623–727. MR 125307, DOI 10.1002/cpa.3160120405
- A. D. Aleksandrov, Uniqueness theorems for surfaces in the large. I, Vestnik Leningrad. Univ. 11 (1956), no. 19, 5–17 (Russian). MR 86338
- Sheldon Axler, Paul Bourdon, and Wade Ramey, Harmonic function theory, 2nd ed., Graduate Texts in Mathematics, vol. 137, Springer-Verlag, New York, 2001. MR 1805196, DOI 10.1007/978-1-4757-8137-3
- Jaigyoung Choe, Sufficient conditions for constant mean curvature surfaces to be round, Math. Ann. 323 (2002), no. 1, 143–156. MR 1906912, DOI 10.1007/s002080100300
- Marco Cicalese, Gian Paolo Leonardi, and Francesco Maggi, Sharp stability inequalities for planar double bubbles, Interfaces Free Bound. 19 (2017), no. 3, 305–350. MR 3713891, DOI 10.4171/IFB/384
- Paul Concus and Robert Finn, On the behavior of a capillary surface in a wedge, Proceedings of the National Academy of Sciences 63 (1969-06), no. 2, 292–299., DOI 10.1073/pnas.63.2.292
- Paul Concus and Robert Finn, Capillary wedges revisited, SIAM J. Math. Anal. 27 (1996), no. 1, 56–69. MR 1373146, DOI 10.1137/S0036141093247482
- Camillo De Lellis, Guido De Philippis, Bernd Kirchheim, and Riccardo Tione, Geometric measure theory and differential inclusions, Ann. Fac. Sci. Toulouse Math. (6) 30 (2021), no. 4, 899–960 (English, with English and French summaries). MR 4350101, DOI 10.5802/afst.1691
- Guido De Philippis, Antonio De Rosa, and Francesco Ghiraldin, Rectifiability of varifolds with locally bounded first variation with respect to anisotropic surface energies, Comm. Pure Appl. Math. 71 (2018), no. 6, 1123–1148. MR 3794529, DOI 10.1002/cpa.21713
- Antonio De Rosa and Stefano Gioffrè, Quantitative stability for anisotropic nearly umbilical hypersurfaces, J. Geom. Anal. 29 (2019), no. 3, 2318–2346. MR 3969428, DOI 10.1007/s12220-018-0079-2
- Antonio De Rosa and Stefano Gioffrè, Absence of bubbling phenomena for non-convex anisotropic nearly umbilical and quasi-Einstein hypersurfaces, J. Reine Angew. Math. 780 (2021), 1–40. MR 4333979, DOI 10.1515/crelle-2021-0038
- Antonio De Rosa, Sławomir Kolasiński, and Mario Santilli, Uniqueness of critical points of the anisotropic isoperimetric problem for finite perimeter sets, Arch. Ration. Mech. Anal. 238 (2020), no. 3, 1157–1198. MR 4160798, DOI 10.1007/s00205-020-01562-y
- Antonio De Rosa and Riccardo Tione, Regularity for graphs with bounded anisotropic mean curvature, Invent. Math. 230 (2022), no. 2, 463–507. MR 4493323, DOI 10.1007/s00222-022-01129-6
- C. Delauney, Sur la surface de révolution dont la courbure moyenne est constant, J. Math. Pures Appl. (1841), 309–320.
- Matias G. Delgadino, Francesco Maggi, Cornelia Mihaila, and Robin Neumayer, Bubbling with $L^2$-almost constant mean curvature and an Alexandrov-type theorem for crystals, Arch. Ration. Mech. Anal. 230 (2018), no. 3, 1131–1177. MR 3851057, DOI 10.1007/s00205-018-1267-8
- Matias G. Delgadino and Daniel Weser, A Heintze-Karcher inequality with free boundaries and applications to capillarity theory, J. Funct. Anal. 287 (2024), no. 9, Paper No. 110584, 43. MR 4783570, DOI 10.1016/j.jfa.2024.110584
- Matias Gonzalo Delgadino and Francesco Maggi, Alexandrov’s theorem revisited, Anal. PDE 12 (2019), no. 6, 1613–1642. MR 3921314, DOI 10.2140/apde.2019.12.1613
- Rebecca Dorff, Gary Lawlor, Donald Sampson, and Brandon Wilson, Proof of the planar double bubble conjecture using metacalibration methods, Involve 2 (2009), no. 5, 611–628. MR 2601581, DOI 10.2140/involve.2009.2.611
- Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR 1625845, DOI 10.1090/gsm/019
- Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Revised edition, Textbooks in Mathematics, CRC Press, Boca Raton, FL, 2015. MR 3409135, DOI 10.1201/b18333
- Robert Finn, Equilibrium capillary surfaces, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 284, Springer-Verlag, New York, 1986. MR 816345, DOI 10.1007/978-1-4613-8584-4
- Robert Finn and John McCuan, Vertex theorems for capillary drops on support planes, Math. Nachr. 209 (2000), 115–135. MR 1734361, DOI 10.1002/(sici)1522-2616(200001)209:1<115::aid-mana115>3.0.co;2-j
- J. Foisy, Soap bubble clusters in $\mathbb {R}^2$ and $\mathbb {R}^3$, Undergraduate Thesis, Williams College, 1991.
- Joel Foisy, Manuel Alfaro, Jeffrey Brock, Nickelous Hodges, and Jason Zimba, The standard double soap bubble in $\textbf {R}^2$ uniquely minimizes perimeter, Pacific J. Math. 159 (1993), no. 1, 47–59. MR 1211384, DOI 10.2140/pjm.1993.159.47
- Mariano Giaquinta and Luca Martinazzi, An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs, 2nd ed., Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], vol. 11, Edizioni della Normale, Pisa, 2012. MR 3099262, DOI 10.1007/978-88-7642-443-4
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR 473443, DOI 10.1007/978-3-642-96379-7
- Pierre Grisvard, Elliptic problems in nonsmooth domains, Classics in Applied Mathematics, vol. 69, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. Reprint of the 1985 original [ MR0775683]; With a foreword by Susanne C. Brenner. MR 3396210, DOI 10.1137/1.9781611972030.ch1
- Joel Hass, Michael Hutchings, and Roger Schlafly, The double bubble conjecture, Electron. Res. Announc. Amer. Math. Soc. 1 (1995), no. 3, 98–102. MR 1369639, DOI 10.1090/S1079-6762-95-03001-0
- C. Heilmann, Y. Lai, B. Reichardt, and A. Spielman, Component bounds for area minimizing double bubbles, NSF SMALL Undergraduate Research Geometry Group Report, Williams College, 1999.
- Jonas Hirsch and Riccardo Tione, On the constancy theorem for anisotropic energies through differential inclusions, Calc. Var. Partial Differential Equations 60 (2021), no. 3, Paper No. 86, 52. MR 4248559, DOI 10.1007/s00526-021-01981-z
- Michael Hutchings, The structure of area-minimizing double bubbles, J. Geom. Anal. 7 (1997), no. 2, 285–304. MR 1646776, DOI 10.1007/BF02921724
- Michael Hutchings, Frank Morgan, Manuel Ritore, and Antonio Ros, Proof of the double bubble conjecture, Electron. Res. Announc. Amer. Math. Soc. 6 (2000), 45–49. MR 1777854, DOI 10.1090/S1079-6762-00-00079-2
- Michael Hutchings, Frank Morgan, Manuel Ritoré, and Antonio Ros, Proof of the double bubble conjecture, Ann. of Math. (2) 155 (2002), no. 2, 459–489. MR 1906593, DOI 10.2307/3062123
- Xiaohan Jia, Guofang Wang, Chao Xia, and Xuwen Zhang, Heintze-Karcher inequality and capillary hypersurfaces in a wedge, arXiv:2209.13839 (2022).
- Jürgen Jost, Two-dimensional geometric variational problems, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1991. A Wiley-Interscience Publication. MR 1100926
- D. Kinderlehrer, L. Nirenberg, and J. Spruck, Regularity in elliptic free boundary problems, J. Analyse Math. 34 (1978), 86–119 (1979). MR 531272, DOI 10.1007/BF02790009
- Steven G. Krantz, Geometric function theory, Cornerstones, Birkhäuser Boston, Inc., Boston, MA, 2006. Explorations in complex analysis. MR 2167675
- Gary R. Lawlor, Double bubbles for immiscible fluids in $\Bbb {R}^n$, J. Geom. Anal. 24 (2014), no. 1, 190–204. MR 3145921, DOI 10.1007/s12220-012-9333-1
- Rafael López, Constant mean curvature surfaces with boundary, Springer Monographs in Mathematics, Springer, Heidelberg, 2013. MR 3098467, DOI 10.1007/978-3-642-39626-7
- Rafael López, Capillary surfaces with free boundary in a wedge, Adv. Math. 262 (2014), 476–483. MR 3228434, DOI 10.1016/j.aim.2014.05.019
- Francesco Maggi, Sets of finite perimeter and geometric variational problems, Cambridge Studies in Advanced Mathematics, vol. 135, Cambridge University Press, Cambridge, 2012. An introduction to geometric measure theory. MR 2976521, DOI 10.1017/CBO9781139108133
- John McCuan, Symmetry via spherical reflection and spanning drops in a wedge, Pacific J. Math. 180 (1997), no. 2, 291–323. MR 1487566, DOI 10.2140/pjm.1997.180.291
- Monica Moulin Ribeiro Merkle, Symmetries in some extremal problems between two parallel hyperplanes, Filomat 31 (2017), no. 14, 4483–4490. MR 3730371, DOI 10.2298/fil1714483r
- Erich Miersemann, Asymptotic expansion at a corner for the capillary problem, Pacific J. Math. 134 (1988), no. 2, 299–311. MR 961237, DOI 10.2140/pjm.1988.134.299
- E. Miersemann, On capillary free surfaces without gravity, Z. Anal. Anwendungen 4 (1985), no. 5, 429–436 (English, with German and Russian summaries). MR 816928, DOI 10.4171/ZAA/164
- Emanuel Milman and Joe Neeman, The structure of isoperimetric bubbles on $\mathbb {R}^n$ and $\mathbb {S}^n$, arXiv:2205.09102 (2022).
- Emanuel Milman and Joe Neeman, The Gaussian double-bubble and multi-bubble conjectures, Ann. of Math. (2) 195 (2022), no. 1, 89–206. MR 4358414, DOI 10.4007/annals.2022.195.1.2
- F. Morgan, The double bubble conjecture, FOCUS, 1995.
- Frank Morgan, Geometric measure theory, 5th ed., Elsevier/Academic Press, Amsterdam, 2016. A beginner’s guide; Illustrated by James F. Bredt. MR 3497381
- Frank Morgan and Wacharin Wichiramala, The standard double bubble is the unique stable double bubble in $\mathbf R^2$, Proc. Amer. Math. Soc. 130 (2002), no. 9, 2745–2751. MR 1900881, DOI 10.1090/S0002-9939-02-06640-6
- Filomena Pacella and Giulio Tralli, Overdetermined problems and constant mean curvature surfaces in cones, Rev. Mat. Iberoam. 36 (2020), no. 3, 841–867. MR 4109828, DOI 10.4171/rmi/1151
- E. Paolini and V. M. Tortorelli, The quadruple planar bubble enclosing equal areas is symmetric, Calc. Var. Partial Differential Equations 59 (2020), no. 1, Paper No. 20, 9. MR 4048329, DOI 10.1007/s00526-019-1687-9
- Emanuele Paolini and Andrea Tamagnini, Minimal clusters of four planar regions with the same area, ESAIM Control Optim. Calc. Var. 24 (2018), no. 3, 1303–1331. MR 3877203, DOI 10.1051/cocv/2017066
- Sung-ho Park, Every ring type spanner in a wedge is spherical, Math. Ann. 332 (2005), no. 3, 475–482. MR 2181758, DOI 10.1007/s00208-005-0476-2
- Joseph Plateau, Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires, Gauthier Villars, 1873.
- Ben W. Reichardt, Proof of the double bubble conjecture in $\mathbf R^n$, J. Geom. Anal. 18 (2008), no. 1, 172–191. MR 2365672, DOI 10.1007/s12220-007-9002-y
- Mario Santilli, Uniqueness of singular convex hypersurfaces with lower bounded k-th mean curvature, 2020.
- Leon Simon, Regularity of capillary surfaces over domains with corners, Pacific J. Math. 88 (1980), no. 2, 363–377. MR 607984, DOI 10.2140/pjm.1980.88.363
- Leon Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983. MR 756417
- Michael Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 3, Publish or Perish, Inc., 1999.
- John M. Sullivan and Frank Morgan, Open problems in soap bubble geometry, Internat. J. Math. 7 (1996), no. 6, 833–842. MR 1417788, DOI 10.1142/S0129167X9600044X
- Luen-Fai Tam, Regularity of capillary surfaces over domains with corners: borderline case, Pacific J. Math. 124 (1986), no. 2, 469–482. MR 856173, DOI 10.2140/pjm.1986.124.469
- Guofang Wang, Liangjun Weng, and Chao Xia, Alexandrov-Fenchel inequalities for convex hypersurfaces in the half-space with capillary boundary, Math. Ann. 388 (2024), no. 2, 2121–2154. MR 4700391, DOI 10.1007/s00208-023-02571-4
- Hassler Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), no. 1, 63–89. MR 1501735, DOI 10.1090/S0002-9947-1934-1501735-3
- Wacharin Wichiramala, The planar triple bubble problem, ProQuest LLC, Ann Arbor, MI, 2002. Thesis (Ph.D.)–University of Illinois at Urbana-Champaign. MR 2704014
- Neshan Wickramasekera, A sharp strong maximum principle and a sharp unique continuation theorem for singular minimal hypersurfaces, Calc. Var. Partial Differential Equations 51 (2014), no. 3-4, 799–812. MR 3268871, DOI 10.1007/s00526-013-0695-4
Bibliographic Information
- Antonio De Rosa
- Affiliation: Department of Decision Sciences, Bocconi University, Milano, Italy; and BIDSA, Bocconi University, Milano, Italy
- MR Author ID: 1141319
- ORCID: 0000-0002-1392-4881
- Email: antonio.derosa@unibocconi.it
- Riccardo Tione
- Affiliation: Dipartimento di Matematica “Giuseppe Peano”, Università degli Studi di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
- MR Author ID: 1321530
- ORCID: 0000-0002-0094-5923
- Email: riccardo.tione@unito.it
- Received by editor(s): June 7, 2024
- Received by editor(s) in revised form: July 30, 2024, and October 15, 2024
- Published electronically: February 11, 2025
- Additional Notes: The first author was partially supported by the NSF DMS Grant No. 1906451, the NSF DMS Grant No. 2112311, the NSF DMS CAREER Award No. 2143124, and the European Union: the European Research Council (ERC), through StG “ANGEVA”, project number: 101076411. Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them.
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 3393-3444
- MSC (2020): Primary 35D30, 49Q05, 49Q20, 52A20, 53A10
- DOI: https://doi.org/10.1090/tran/9400