Topological mean dimension of induced systems
HTML articles powered by AMS MathViewer
- by David Burguet and Ruxi Shi;
- Trans. Amer. Math. Soc. 378 (2025), 3085-3103
- DOI: https://doi.org/10.1090/tran/9407
- Published electronically: March 4, 2025
- HTML | PDF | Request permission
Abstract:
For a topological system with positive topological entropy, we show that the induced transformation on the set of probability measures endowed with the weak-$*$ topology has infinite topological mean dimension. As an application, it answers a question of Kloeckner [J. Topol. Anal. 4 (2012), pp. 203–235]. We also estimate the rate of divergence of the entropy with respect to the Wasserstein distance when the scale goes to zero.References
- François Bolley, Arnaud Guillin, and Cédric Villani, Quantitative concentration inequalities for empirical measures on non-compact spaces, Probab. Theory Related Fields 137 (2007), no. 3-4, 541–593. MR 2280433, DOI 10.1007/s00440-006-0004-7
- Walter Bauer and Karl Sigmund, Topological dynamics of transformations induced on the space of probability measures, Monatsh. Math. 79 (1975), 81–92. MR 370540, DOI 10.1007/BF01585664
- David Burguet and Ruxi Shi, Mean dimension of continuous cellular automata, Israel J. Math. 259 (2024), no. 1, 311–346. MR 4732372, DOI 10.1007/s11856-023-2493-9
- Michel Coornaert, Dimension topologique et systèmes dynamiques, Cours Spécialisés [Specialized Courses], vol. 14, Société Mathématique de France, Paris, 2005 (French). MR 2225739
- Antoine Gournay, Widths of $\ell ^p$ balls, Houston J. Math. 37 (2011), no. 4, 1227–1248. MR 2875268
- Misha Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps. I, Math. Phys. Anal. Geom. 2 (1999), no. 4, 323–415. MR 1742309, DOI 10.1023/A:1009841100168
- Eli Glasner and Benjamin Weiss, Quasi-factors of zero-entropy systems, J. Amer. Math. Soc. 8 (1995), no. 3, 665–686. MR 1270579, DOI 10.1090/S0894-0347-1995-1270579-5
- Lei Jin and Yixiao Qiao, Mean dimension of product spaces: a fundamental formula, 2021.
- A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 137–173. MR 573822, DOI 10.1007/BF02684777
- David Kerr and Hanfeng Li, Independence in topological and $C^*$-dynamics, Math. Ann. 338 (2007), no. 4, 869–926. MR 2317754, DOI 10.1007/s00208-007-0097-z
- Benoît Kloeckner, A generalization of Hausdorff dimension applied to Hilbert cubes and Wasserstein spaces, J. Topol. Anal. 4 (2012), no. 2, 203–235. MR 2949240, DOI 10.1142/S1793525312500094
- Benoît Kloeckner, Optimal transport and dynamics of expanding circle maps acting on measures, Ergodic Theory Dynam. Systems 33 (2013), no. 2, 529–548. MR 3035296, DOI 10.1017/S014338571100109X
- Henri Lebesgue, Sur la non-applicabilité de deux domaines appartenant respectivement à des espaces à $n$ et $n+p$ dimensions, Math. Ann. 70 (1911), no. 2, 166–168 (French). MR 1511616, DOI 10.1007/BF01461155
- Elon Lindenstrauss and Masaki Tsukamoto, Double variational principle for mean dimension, Geom. Funct. Anal. 29 (2019), no. 4, 1048–1109. MR 3990194, DOI 10.1007/s00039-019-00501-8
- Elon Lindenstrauss and Benjamin Weiss, Mean topological dimension, Israel J. Math. 115 (2000), 1–24. MR 1749670, DOI 10.1007/BF02810577
- John Milnor, Introductory dynamics lectures, http://www.math.stonybrook.edu/~jack/DYNOTES/.
- MichałMisiurewicz, Horseshoes for mappings of the interval, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), no. 2, 167–169 (English, with Russian summary). MR 542778
- N. Sauer, On the density of families of sets, J. Combinatorial Theory Ser. A 13 (1972), 145–147. MR 307902, DOI 10.1016/0097-3165(72)90019-2
- Saharon Shelah, A combinatorial problem; stability and order for models and theories in infinitary languages, Pacific J. Math. 41 (1972), 247–261. MR 307903, DOI 10.2140/pjm.1972.41.247
- Karl Sigmund, Affine transformations on the space of probability measures, Dynamical systems, Vol. III—Warsaw, Astérisque, No. 51, Soc. Math. France, Paris, 1978, pp. 415–427. MR 480946
- Masaki Tsukamoto, Macroscopic dimension of the $l^p$-ball with respect to the $l^q$-norm, J. Math. Kyoto Univ. 48 (2008), no. 2, 445–454. MR 2436746, DOI 10.1215/kjm/1250271421
- Masaki Tsukamoto, Mean dimension of full shifts, Israel J. Math. 230 (2019), no. 1, 183–193. MR 3941145, DOI 10.1007/s11856-018-1813-y
- Xiaoyao Zhou, Yong Ji, and Ercai Chen, Entropy and emergence of topological dynamical systems, arXiv:2005.01548.
Bibliographic Information
- David Burguet
- Affiliation: CNRS Université de Picardie Jules Verne, 80000 Amiens, France
- MR Author ID: 851212
- Email: david.burguet@u-picardie.fr
- Ruxi Shi
- Affiliation: Shanghai Center for Mathematical Sciences, Fudan University, 200438 Shanghai, People’s Republic of China
- MR Author ID: 1183898
- ORCID: 0000-0001-7696-4787
- Email: ruxishi@fudan.edu.cn
- Received by editor(s): February 19, 2023
- Received by editor(s) in revised form: November 28, 2023
- Published electronically: March 4, 2025
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 3085-3103
- MSC (2020): Primary 37B02, 37B40, 60B05
- DOI: https://doi.org/10.1090/tran/9407