A single-point Reshetnyak’s theorem
HTML articles powered by AMS MathViewer
- by Ilmari Kangasniemi and Jani Onninen;
- Trans. Amer. Math. Soc. 378 (2025), 3105-3128
- DOI: https://doi.org/10.1090/tran/9415
- Published electronically: March 4, 2025
- HTML | PDF | Request permission
Abstract:
We prove a single-value version of Reshetnyak’s theorem. Namely, if a non-constant map $f \in W^{1,n}_{\mathrm {loc}}(\Omega , \mathbb {R}^n)$ from a domain $\Omega \subset \mathbb {R}^n$ satisfies the estimate $\lvert Df(x) \rvert ^n \leq K J_f(x) + \Sigma (x) \lvert f(x) - y_0 \rvert ^n$ at almost every $x \in \Omega$ for some $K \geq 1$, $y_0\in \mathbb {R}^n$ and $\Sigma \in L^{1+\varepsilon }_{\mathrm {loc}}(\Omega )$, then $f^{-1}\{y_0\}$ is discrete, the local index $i(x, f)$ is positive in $f^{-1}\{y_0\}$, and every neighborhood of a point of $f^{-1}\{y_0\}$ is mapped to a neighborhood of $y_0$. Assuming this estimate for a fixed $K$ at every $y_0 \in \mathbb {R}^n$ is equivalent to assuming that the map $f$ is $K$-quasiregular, even if the choice of $\Sigma$ is different for each $y_0$. Since the estimate also yields a single-value Liouville theorem, it hence appears to be a good pointwise definition of $K$-quasiregularity. As a corollary of our single-value Reshetnyak’s theorem, we obtain a higher-dimensional version of the argument principle that played a key part in the solution to the Calderón problem.References
- Kari Astala, Tadeusz Iwaniec, and Gaven Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton Mathematical Series, vol. 48, Princeton University Press, Princeton, NJ, 2009. MR 2472875
- Kari Astala and Lassi Päivärinta, Calderón’s inverse conductivity problem in the plane, Ann. of Math. (2) 163 (2006), no. 1, 265–299. MR 2195135, DOI 10.4007/annals.2006.163.265
- Lipman Bers, Theory of pseudo-analytic functions, New York University, Institute for Mathematics and Mechanics, New York, 1953. MR 57347
- Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR 1039321
- Irene Fonseca and Wilfrid Gangbo, Degree theory in analysis and applications, Oxford Lecture Series in Mathematics and its Applications, vol. 2, The Clarendon Press, Oxford University Press, New York, 1995. Oxford Science Publications. MR 1373430, DOI 10.1093/oso/9780198511960.001.0001
- F. W. Gehring, The $L^{p}$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265–277. MR 402038, DOI 10.1007/BF02392268
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364, DOI 10.1007/978-3-642-61798-0
- Juha Heinonen, Tero Kilpeläinen, and Olli Martio, Nonlinear potential theory of degenerate elliptic equations, Dover Publications, Inc., Mineola, NY, 2006. Unabridged republication of the 1993 original. MR 2305115
- T. Iwaniec, The Gehring lemma, In P. Duren, J. Heinonen, B. Osgood, and B. Palka, editors, Quasiconformal mappings and analysis: a collection of papers honoring F.W. Gehring, Springer, 1998.
- Tadeusz Iwaniec and Gaven Martin, Geometric function theory and non-linear analysis, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2001. MR 1859913, DOI 10.1093/oso/9780198509295.001.0001
- Ilmari Kangasniemi and Jani Onninen, On the heterogeneous distortion inequality, Math. Ann. 384 (2022), no. 3-4, 1275–1308. MR 4498473, DOI 10.1007/s00208-021-02315-2
- Ilmari Kangasniemi and Jani Onninen, Correction to: On the heterogeneous distortion inequality, Math. Ann. 389 (2024), no. 2, 2037–2047. MR 4745758, DOI 10.1007/s00208-023-02728-1
- Jan Malý and William P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, Mathematical Surveys and Monographs, vol. 51, American Mathematical Society, Providence, RI, 1997. MR 1461542, DOI 10.1090/surv/051
- Norman G. Meyers and Alan Elcrat, Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions, Duke Math. J. 42 (1975), 121–136. MR 417568
- Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR 202511, DOI 10.1007/978-3-540-69952-1
- Jani Onninen and Xiao Zhong, Mappings of finite distortion: a new proof for discreteness and openness, Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), no. 5, 1097–1102. MR 2477453, DOI 10.1017/S0308210506000825
- Ju. G. Rešetnjak, Estimates of the modulus of continuity for certain mappings, Sibirsk. Mat. Ž. 7 (1966), 1106–1114 (Russian). MR 200443
- Ju. G. Rešetnjak, Liouville’s conformal mapping theorem under minimal regularity hypotheses, Sibirsk. Mat. Ž. 8 (1967), 835–840 (Russian). MR 218544
- Ju. G. Rešetnjak, A condition for boundedness of the index for mappings with bounded distortion, Sibirsk. Mat. Ž. 9 (1968), 368–374 (Russian). MR 226005
- Ju. G. Rešetnjak, Spatial mappings with bounded distortion, Sibirsk. Mat. Ž. 8 (1967), 629–658 (Russian). MR 215990
- Yu. G. Reshetnyak, Space mappings with bounded distortion, Translations of Mathematical Monographs, vol. 73, American Mathematical Society, Providence, RI, 1989. Translated from the Russian by H. H. McFaden. MR 994644, DOI 10.1090/mmono/073
- Seppo Rickman, Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 26, Springer-Verlag, Berlin, 1993. MR 1238941, DOI 10.1007/978-3-642-78201-5
- R. Schoen and L. Simon, Regularity of simply connected surfaces with quasiconformal Gauss map, Seminar on minimal submanifolds, Ann. of Math. Stud., vol. 103, Princeton Univ. Press, Princeton, NJ, 1983, pp. 127–145. MR 795232
- Leon Simon, A Hölder estimate for quasiconformal maps between surfaces in Euclidean space, Acta Math. 139 (1977), no. 1-2, 19–51. MR 452746, DOI 10.1007/BF02392233
- I. N. Vekua, Generalized analytic functions, Pergamon Press, London-Paris-Frankfurt; Addison-Wesley Publishing Company, Inc., Reading, MA, 1962. MR 150320
- Matti Vuorinen, Conformal geometry and quasiconformal maps, Complex analysis and applications ’87 (Varna, 1987) Publ. House Bulgar. Acad. Sci., Sofia, 1989, pp. 532–544. MR 1127675
- Aleksandra Zapadinskaya, Hölder continuous Sobolev mappings and the Lusin N property, Illinois J. Math. 58 (2014), no. 2, 585–591. MR 3367665
Bibliographic Information
- Ilmari Kangasniemi
- Affiliation: Department of Mathematical Sciences, University of Cincinnati, P.O. Box 210025, Cincinnati, Ohio 45221
- MR Author ID: 1315660
- ORCID: 0000-0003-0031-5718
- Email: kangaski@ucmail.uc.edu
- Jani Onninen
- Affiliation: Department of Mathematics, Syracuse University, Syracuse, New York 13244; and Department of Mathematics and Statistics, P.O.Box 35 (MaD) FI-40014 University of Jyväskylä, Finland
- MR Author ID: 679509
- ORCID: 0000-0002-9961-4808
- Email: jkonnine@syr.edu
- Received by editor(s): April 20, 2022
- Received by editor(s) in revised form: August 18, 2023, November 30, 2023, and January 24, 2024
- Published electronically: March 4, 2025
- Additional Notes: The second author was supported by the NSF grant DMS-2154943. During the late stages of finalizing this manuscript, the first author was supported by the NSF grant DMS-2247469.
- Dedicated: Dedicated to the memory of Yurii Reshetnyak
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 3105-3128
- MSC (2020): Primary 30C65; Secondary 35R45
- DOI: https://doi.org/10.1090/tran/9415