Rigidity of harmonic functions on the supercritical percolation cluster
HTML articles powered by AMS MathViewer
- by Ahmed Bou-Rabee, William Cooperman and Paul Dario;
- Trans. Amer. Math. Soc. 378 (2025), 3823-3896
- DOI: https://doi.org/10.1090/tran/9264
- Published electronically: March 19, 2025
- PDF | Request permission
Abstract:
We use ideas from quantitative homogenization to show that nonconstant harmonic functions on the percolation cluster cannot satisfy certain structural constraints, for example, a Lipschitz bound. These unique-continuation-type results are false on the full lattice and hence the disorder is utilized in an essential way.References
- Yoshihiro Abe, Effective resistances for supercritical percolation clusters in boxes, Ann. Inst. Henri Poincaré Probab. Stat. 51 (2015), no. 3, 935–946 (English, with English and French summaries). MR 3365968, DOI 10.1214/14-AIHP604
- Scott Armstrong and Paul Dario, Elliptic regularity and quantitative homogenization on percolation clusters, Comm. Pure Appl. Math. 71 (2018), no. 9, 1717–1849. MR 3847767, DOI 10.1002/cpa.21726
- Scott Armstrong, Tuomo Kuusi, and Jean-Christophe Mourrat, Quantitative stochastic homogenization and large-scale regularity, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 352, Springer, Cham, 2019. MR 3932093, DOI 10.1007/978-3-030-15545-2
- Peter Antal and Agoston Pisztora, On the chemical distance for supercritical Bernoulli percolation, Ann. Probab. 24 (1996), no. 2, 1036–1048. MR 1404543, DOI 10.1214/aop/1039639377
- Scott N. Armstrong and Charles K. Smart, Stochastic homogenization of fully nonlinear uniformly elliptic equations revisited, Calc. Var. Partial Differential Equations 50 (2014), no. 3-4, 967–980. MR 3216841, DOI 10.1007/s00526-013-0663-z
- Martin T. Barlow, Random walks on supercritical percolation clusters, Ann. Probab. 32 (2004), no. 4, 3024–3084. MR 2094438, DOI 10.1214/009117904000000748
- Noam Berger and Marek Biskup, Quenched invariance principle for simple random walk on percolation clusters, Probab. Theory Related Fields 137 (2007), no. 1-2, 83–120. MR 2278453, DOI 10.1007/s00440-006-0498-z
- Itai Benjamini, Hugo Duminil-Copin, Gady Kozma, and Ariel Yadin, Disorder, entropy and harmonic functions, Ann. Probab. 43 (2015), no. 5, 2332–2373. MR 3395463, DOI 10.1214/14-AOP934
- Thierry Bodineau, Benjamin Graham, and Marc Wouts, Metastability in the dilute Ising model, Probab. Theory Related Fields 157 (2013), no. 3-4, 955–1009. MR 3129807, DOI 10.1007/s00440-012-0474-8
- M. T. Barlow and B. M. Hambly, Parabolic Harnack inequality and local limit theorem for percolation clusters, Electron. J. Probab. 14 (2009), no. 1, 1–27. MR 2471657, DOI 10.1214/ejp.v14-587
- Lev Buhovsky, Alexander Logunov, Eugenia Malinnikova, and Mikhail Sodin, A discrete harmonic function bounded on a large portion of $\Bbb Z^2$ is constant, Duke Math. J. 171 (2022), no. 6, 1349–1378. MR 4408120, DOI 10.1215/00127094-2021-0037
- Ahmed Bou-Rabee, Convergence of the random Abelian sandpile, Ann. Probab. 49 (2021), no. 6, 3168–3196. MR 4348688, DOI 10.1214/21-aop1528
- Ahmed Bou-Rabee, Integer superharmonic matrices on the $F$-lattice, Adv. Math. 436 (2024), Paper No. 109400, 98. MR 4669323, DOI 10.1016/j.aim.2023.109400
- Ahmed Bou-Rabee, A shape theorem for exploding sandpiles, Ann. Appl. Probab. 34 (2024), no. 1A, 714–742. MR 4696289, DOI 10.1214/23-aap1976
- J. T. Chayes, L. Chayes, Judy R. Franz, James P. Sethna, and S. A. Trugman, On the density of states for the quantum percolation problem, J. Phys. A 19 (1986), no. 18, L1173–L1177. MR 869300, DOI 10.1088/0305-4470/19/18/011
- Paul Dario, Optimal corrector estimates on percolation cluster, Ann. Appl. Probab. 31 (2021), no. 1, 377–431. MR 4254484, DOI 10.1214/20-aap1593
- Thierry Delmotte, Parabolic Harnack inequality and estimates of Markov chains on graphs, Rev. Mat. Iberoamericana 15 (1999), no. 1, 181–232. MR 1681641, DOI 10.4171/RMI/254
- Paul Dario and Chenlin Gu, Quantitative homogenization of the parabolic and elliptic Green’s functions on percolation clusters, Ann. Probab. 49 (2021), no. 2, 556–636. MR 4255127, DOI 10.1214/20-aop1456
- D. Dhar, P. Ruelle, S. Sen, and D.-N. Verma, Algebraic aspects of abelian sandpile models, J. Phys. A 28 (1995), no. 4, 805–831. MR 1326322, DOI 10.1088/0305-4470/28/4/009
- Peter G. Doyle and J. Laurie Snell, Random walks and electric networks, Carus Mathematical Monographs, vol. 22, Mathematical Association of America, Washington, DC, 1984. MR 920811, DOI 10.5948/UPO9781614440222
- Jian Ding and Charles K. Smart, Localization near the edge for the Anderson Bernoulli model on the two dimensional lattice, Invent. Math. 219 (2020), no. 2, 467–506. MR 4054258, DOI 10.1007/s00222-019-00910-4
- Geoffrey R. Grimmett, Long paths and cycles in a random lattice, Random graphs ’85 (Poznań, 1985) North-Holland Math. Stud., vol. 144, North-Holland, Amsterdam, 1987, pp. 69–76. MR 930484
- Geoffrey Grimmett, Percolation, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 321, Springer-Verlag, Berlin, 1999. MR 1707339, DOI 10.1007/978-3-662-03981-6
- Qing Han, Singular sets of solutions to elliptic equations, Indiana Univ. Math. J. 43 (1994), no. 3, 983–1002. MR 1305956, DOI 10.1512/iumj.1994.43.43043
- Robert D. Hough, Daniel C. Jerison, and Lionel Levine, Sandpiles on the square lattice, Comm. Math. Phys. 367 (2019), no. 1, 33–87. MR 3933404, DOI 10.1007/s00220-019-03408-5
- Robert Hough and Hyojeong Son, Cut-off for sandpiles on tiling graphs, Ann. Probab. 49 (2021), no. 2, 671–731. MR 4255129, DOI 10.1214/20-aop1458
- Robert Hough and Hyojeong Son, The spectrum of the abelian sandpile model, Math. Comp. 90 (2021), no. 327, 441–469. MR 4166468, DOI 10.1090/mcom/3565
- Daniel C. Jerison, Lionel Levine, and John Pike, Mixing time and eigenvalues of the abelian sandpile Markov chain, Trans. Amer. Math. Soc. 372 (2019), no. 12, 8307–8345. MR 4029698, DOI 10.1090/tran/7585
- Harry Kesten, Percolation theory for mathematicians, Progress in Probability and Statistics, vol. 2, Birkhäuser, Boston, MA, 1982. MR 692943, DOI 10.1007/978-1-4899-2730-9
- Alexander Logunov and Eugenia Malinnikova, Review of Yau’s conjecture on zero sets of Laplace eigenfunctions, Current developments in mathematics 2018, Int. Press, Somerville, MA, [2020] ©2020, pp. 179–212. MR 4363378
- Lionel Levine and James Propp, What is $\dots$ a sandpile?, Notices Amer. Math. Soc. 57 (2010), no. 8, 976–979. MR 2667495
- Russell Lyons and Yuval Peres, Probability on trees and networks, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 42, Cambridge University Press, New York, 2016. MR 3616205, DOI 10.1017/9781316672815
- Lionel Levine and Yuval Peres, Laplacian growth, sandpiles, and scaling limits, Bull. Amer. Math. Soc. (N.S.) 54 (2017), no. 3, 355–382. MR 3662912, DOI 10.1090/bull/1573
- Lionel Levine, Wesley Pegden, and Charles K. Smart, Apollonian structure in the Abelian sandpile, Geom. Funct. Anal. 26 (2016), no. 1, 306–336. MR 3494492, DOI 10.1007/s00039-016-0358-7
- Lionel Levine, Wesley Pegden, and Charles K. Smart, The Apollonian structure of integer superharmonic matrices, Ann. of Math. (2) 186 (2017), no. 1, 1–67. MR 3664999, DOI 10.4007/annals.2017.186.1.1
- T. M. Liggett, R. H. Schonmann, and A. M. Stacey, Domination by product measures, Ann. Probab. 25 (1997), no. 1, 71–95. MR 1428500, DOI 10.1214/aop/1024404279
- Linjun Li and Lingfu Zhang, Anderson-Bernoulli localization on the three-dimensional lattice and discrete unique continuation principle, Duke Math. J. 171 (2022), no. 2, 327–415. MR 4375618, DOI 10.1215/00127094-2021-0038
- P. Mathieu, Quenched invariance principles for random walks with random conductances, J. Stat. Phys. 130 (2008), no. 5, 1025–1046. MR 2384074, DOI 10.1007/s10955-007-9465-z
- Keith Miller, Nonunique continuation for uniformly parabolic and elliptic equations in selfadjoint divergence form with Hölder continuous coefficients, Bull. Amer. Math. Soc. 79 (1973), 350–354. MR 313630, DOI 10.1090/S0002-9904-1973-13165-9
- P. Mathieu and A. Piatnitski, Quenched invariance principles for random walks on percolation clusters, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 (2007), no. 2085, 2287–2307. MR 2345229, DOI 10.1098/rspa.2007.1876
- Pierre Mathieu and Elisabeth Remy, Isoperimetry and heat kernel decay on percolation clusters, Ann. Probab. 32 (2004), no. 1A, 100–128. MR 2040777, DOI 10.1214/aop/1078415830
- Agoston Pisztora, Surface order large deviations for Ising, Potts and percolation models, Probab. Theory Related Fields 104 (1996), no. 4, 427–466. MR 1384040, DOI 10.1007/BF01198161
- Mathew D. Penrose and Agoston Pisztora, Large deviations for discrete and continuous percolation, Adv. in Appl. Probab. 28 (1996), no. 1, 29–52. MR 1372330, DOI 10.2307/1427912
- Wesley Pegden and Charles K. Smart, Convergence of the Abelian sandpile, Duke Math. J. 162 (2013), no. 4, 627–642. MR 3039676, DOI 10.1215/00127094-2079677
- Wesley Pegden and Charles K. Smart, Stability of patterns in the Abelian sandpile, Ann. Henri Poincaré 21 (2020), no. 4, 1383–1399. MR 4078284, DOI 10.1007/s00023-020-00898-1
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- Tridib Sadhu and Deepak Dhar, The effect of noise on patterns formed by growing sandpiles, J. Stat. Mech. Theory Exp., 2011 (2011), no.3, P03011.
- Andrey Sokolov, Andrew Melatos, Tien Kieu, and Rachel Webster, Memory on multiple time-scales in an Abelian sandpile, Phys. A., 428 (2015), 295–301.
- Klaus Schmidt and Evgeny Verbitskiy, Abelian sandpiles and the harmonic model, Comm. Math. Phys. 292 (2009), no. 3, 721–759. MR 2551792, DOI 10.1007/s00220-009-0884-3
- Ariel Yadin, personal communication, 2022.
Bibliographic Information
- Ahmed Bou-Rabee
- Affiliation: Courant Institute of Mathematical Sciences, New York University New York, New York 10012
- MR Author ID: 1485207
- William Cooperman
- Affiliation: Courant Institute of Mathematical Sciences, New York University New York, New York 10012
- MR Author ID: 1513864
- Paul Dario
- Affiliation: Laboratoire d’Analyse et de Mathématiques Appliquées (LAMA) and CNRS, Université Paris-Est Créteil, 61 avenue du Général de Gaulle, Créteil, France
- MR Author ID: 1284368
- Received by editor(s): March 13, 2023
- Received by editor(s) in revised form: March 29, 2024
- Published electronically: March 19, 2025
- Additional Notes: The first author was partially supported by NSF grant DMS-2202940 and a Stevanovich fellowship.
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 3823-3896
- MSC (2020): Primary 60K37, 35B53; Secondary 31A05, 31B05
- DOI: https://doi.org/10.1090/tran/9264