The geometric data on the boundary of convex subsets of hyperbolic manifolds
HTML articles powered by AMS MathViewer
- by Qiyu Chen and Jean-Marc Schlenker;
- Trans. Amer. Math. Soc. 378 (2025), 4225-4301
- DOI: https://doi.org/10.1090/tran/9391
- Published electronically: March 19, 2025
- PDF | Request permission
Abstract:
Let $N$ be a geodesically convex subset in a convex co-compact hyperbolic manifold $M$ with incompressible boundary. We assume that each boundary component of $N$ is either a boundary component of $\partial _\infty M$, or a smooth, locally convex surface in $M$. We show that $N$ is uniquely determined by the boundary data defined by the conformal structure on the boundary components at infinity, and by either the induced metric or the third fundamental form on the boundary components which are locally convex surfaces. We also describe the possible boundary data. This provides an extension of both the hyperbolic Weyl problem and the Ahlfors-Bers Theorem.
Using this statement for quasifuchsian manifolds, we obtain existence results for similar questions for convex domains $\Omega \subset \mathbb {H}^3$ which meets the boundary at infinity $\partial _{\infty }\mathbb {H}^3$ either along a quasicircle or along a quasidisk. The boundary data then includes either the induced metric or the third fundamental form in $\mathbb {H}^3$, but also an additional “gluing” data between different components of the boundary, either in $\mathbb {H}^3$ or in $\partial _\infty \mathbb {H}^3$.
References
- Lars Ahlfors and Lipman Bers, Riemann’s mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960), 385–404. MR 115006, DOI 10.2307/1970141
- Lars V. Ahlfors, Quasiconformal reflections, Acta Math. 109 (1963), 291–301. MR 154978, DOI 10.1007/BF02391816
- A. D. Aleksandrov and V. A. Zalgaller, Intrinsic geometry of surfaces, Translations of Mathematical Monographs, Vol. 15, American Mathematical Society, Providence, RI, 1967. Translated from the Russian by J. M. Danskin. MR 216434
- A. D. Alexandrov, A. D. Alexandrov selected works. Part II, Chapman & Hall/CRC, Boca Raton, FL, 2006. Intrinsic geometry of convex surfaces; Edited by S. S. Kutateladze; Translated from the Russian by S. Vakhrameyev. MR 2193913
- A. D. Alexandrov, Convex polyhedra, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005. Translated from the 1950 Russian edition by N. S. Dairbekov, S. S. Kutateladze and A. B. Sossinsky; With comments and bibliography by V. A. Zalgaller and appendices by L. A. Shor and Yu. A. Volkov. MR 2127379
- Charles Gregory Anderson, Projective structures on Riemann surfaces and developing maps to H(3) and CP(n), ProQuest LLC, Ann Arbor, MI, 1998. Thesis (Ph.D.)–University of California, Berkeley. MR 2698860
- E. M. Andreev, Convex polyhedra in Lobačevskiĭ spaces, Mat. Sb. (N.S.) 81(123) (1970), 445–478 (Russian). MR 259734
- E. M. Andreev, Convex polyhedra of finite volume in Lobačevskiĭ space, Mat. Sb. (N.S.) 83(125) (1970), 256–260 (Russian). MR 273510
- Lipman Bers, Spaces of Kleinian groups, Several Complex Variables, I (Proc. Conf., Univ. of Maryland, College Park, Md., 1970) Lecture Notes in Math., Vol. 155, Springer, Berlin-New York, 1970, pp. 9–34. MR 271333
- Christopher J. Bishop, Minkowski dimension and the Poincaré exponent, Michigan Math. J. 43 (1996), no. 2, 231–246. MR 1398152, DOI 10.1307/mmj/1029005460
- Francis Bonahon, Variations of the boundary geometry of $3$-dimensional hyperbolic convex cores, J. Differential Geom. 50 (1998), no. 1, 1–24. MR 1678469
- Francesco Bonsante, Jeffrey Danciger, Sara Maloni, and Jean-Marc Schlenker, The induced metric on the boundary of the convex hull of a quasicircle in hyperbolic and anti–de Sitter geometry, Geom. Topol. 25 (2021), no. 6, 2827–2911. With an appendix by Boubacar Diallo. MR 4347307, DOI 10.2140/gt.2021.25.2827
- Francesco Bonsante and Andrea Seppi, Spacelike convex surfaces with prescribed curvature in $(2+1)$-Minkowski space, Adv. Math. 304 (2017), 434–493. MR 3558215, DOI 10.1016/j.aim.2016.09.005
- Martin Bridgeman and Kenneth Bromberg, A bound on the $l^2$-norm of a projective structure by the length of the bending lamination, 2022.
- K. Bromberg, Hyperbolic cone-manifolds, short geodesics, and Schwarzian derivatives, J. Amer. Math. Soc. 17 (2004), no. 4, 783–826. MR 2083468, DOI 10.1090/S0894-0347-04-00462-X
- K. Bromberg, Rigidity of geometrically finite hyperbolic cone-manifolds, Geom. Dedicata 105 (2004), 143–170. MR 2057249, DOI 10.1023/B:GEOM.0000024664.84428.e7
- Ruth Charney and Michael Davis, The polar dual of a convex polyhedral set in hyperbolic space, Michigan Math. J. 42 (1995), no. 3, 479–510. MR 1357620, DOI 10.1307/mmj/1029005308
- S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), no. 3, 333–354. MR 385749, DOI 10.1002/cpa.3160280303
- Diptaishik Choudhury, Measured foliations at infinity of quasi-Fuchsian manifolds near the Fuchsian locus, Preprint, arXiv:2111.01614, 2021.
- David Dumas, Complex projective structures, Handbook of Teichmüller theory. Vol. II, IRMA Lect. Math. Theor. Phys., vol. 13, Eur. Math. Soc., Zürich, 2009, pp. 455–508. MR 2497780, DOI 10.4171/055-1/13
- David Dumas and Michael Wolf, Projective structures, grafting and measured laminations, Geom. Topol. 12 (2008), no. 1, 351–386. MR 2390348, DOI 10.2140/gt.2008.12.351
- Charles L. Epstein, Envelopes of horospheres and Weingarten surfaces in hyperbolic 3-space, Preprint, 1984.
- D. B. A. Epstein, A. Marden, and V. Markovic, Quasiconformal homeomorphisms and the convex hull boundary, Ann. of Math. (2) 159 (2004), no. 1, 305–336. MR 2052356, DOI 10.4007/annals.2004.159.305
- Victor Guillemin and Alan Pollack, Differential topology, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1974. MR 348781
- John Hempel, Residual finiteness of surface groups, Proc. Amer. Math. Soc. 32 (1972), 323. MR 295352, DOI 10.1090/S0002-9939-1972-0295352-2
- Craig D. Hodgson and Steven P. Kerckhoff, Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differential Geom. 48 (1998), no. 1, 1–59. MR 1622600
- Craig D. Hodgson and Igor Rivin, A characterization of compact convex polyhedra in hyperbolic $3$-space, Invent. Math. 111 (1993), no. 1, 77–111. MR 1193599, DOI 10.1007/BF01231281
- Y. Imayoshi and M. Taniguchi, An introduction to Teichmüller spaces, Springer-Verlag, Tokyo, 1992. Translated and revised from the Japanese by the authors. MR 1215481, DOI 10.1007/978-4-431-68174-8
- Kirill Krasnov and Jean-Marc Schlenker, On the renormalized volume of hyperbolic 3-manifolds, Comm. Math. Phys. 279 (2008), no. 3, 637–668. MR 2386723, DOI 10.1007/s00220-008-0423-7
- François Labourie, Immersions isométriques elliptiques et courbes pseudo-holomorphes, J. Differential Geom. 30 (1989), no. 2, 395–424 (French). MR 1010166
- François Labourie, Métriques prescrites sur le bord des variétés hyperboliques de dimension $3$, J. Differential Geom. 35 (1992), no. 3, 609–626 (French). MR 1163450
- François Labourie, Problème de Minkowski et surfaces à courbure constante dans les variétés hyperboliques, Bull. Soc. Math. France 119 (1991), no. 3, 307–325 (French, with English summary). MR 1125669, DOI 10.24033/bsmf.2169
- François Labourie and Jean-Marc Schlenker, Surfaces convexes fuchsiennes dans les espaces lorentziens à courbure constante, Math. Ann. 316 (2000), no. 3, 465–483 (French, with English summary). MR 1752780, DOI 10.1007/s002080050339
- Hans Lewy, A priori limitations for solutions of Monge-Ampère equations, Trans. Amer. Math. Soc. 37 (1935), no. 3, 417–434. MR 1501794, DOI 10.1090/S0002-9947-1935-1501794-9
- Albert Marden, The geometry of finitely generated kleinian groups, Ann. of Math. (2) 99 (1974), 383–462. MR 349992, DOI 10.2307/1971059
- Albert Marden, Hyperbolic manifolds, Cambridge University Press, Cambridge, 2016. An introduction in 2 and 3 dimensions. MR 3586015, DOI 10.1017/CBO9781316337776
- Miodrag Mateljević, The Ahlfors-Schwarz lemma, curvature, distance and distortion, Bull. Cl. Sci. Math. Nat. Sci. Math. (2020), no. 45, 67–119.
- Katsuhiko Matsuzaki and Masahiko Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. Oxford Science Publications. MR 1638795, DOI 10.1093/oso/9780198500629.001.0001
- Curtis T. McMullen, The moduli space of Riemann surfaces is Kähler hyperbolic, Ann. of Math. (2) 151 (2000), no. 1, 327–357. MR 1745010, DOI 10.2307/121120
- Abderrahim Mesbah, The induced metric and bending lamination on the boundary of convex hyperbolic 3-manifolds, 2023.
- Sergiu Moroianu and Jean-Marc Schlenker, Quasi-Fuchsian manifolds with particles, J. Differential Geom. 83 (2009), no. 1, 75–129. MR 2545031
- Louis Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. 6 (1953), 337–394. MR 58265, DOI 10.1002/cpa.3160060303
- A. V. Pogorelov, Izgibanie vypuklyh poverhnosteĭ, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1951 (Russian). MR 50909
- A. V. Pogorelov, Extrinsic geometry of convex surfaces, Translations of Mathematical Monographs, Vol. 35, American Mathematical Society, Providence, RI, 1973. Translated from the Russian by Israel Program for Scientific Translations. MR 346714, DOI 10.1090/mmono/035
- Roman Prosanov, Dual metrics on the boundary of strictly polyhedral hyperbolic 3-manifolds, arXiv:2203.16971, 2022.
- Roman Prosanov, Hyperbolic 3-manifolds with boundary of polyhedral type, arXiv:2210.17271, 2022.
- Roman Prosanov, Rigidity of compact Fuchsian manifolds with convex boundary, Int. Math. Res. Not. IMRN 3 (2023), 1959–2094. MR 4565606, DOI 10.1093/imrn/rnab270
- Igor Rivin, ON GEOMETRY OF CONVEX POLYHEDRA IN HYPERBOLIC 3-SPACE, ProQuest LLC, Ann Arbor, MI, 1986. Thesis (Ph.D.)–Princeton University. MR 2635205
- Igor Rivin, A characterization of ideal polyhedra in hyperbolic $3$-space, Ann. of Math. (2) 143 (1996), no. 1, 51–70. MR 1370757, DOI 10.2307/2118652
- Harold Rosenberg and Joel Spruck, On the existence of convex hypersurfaces of constant Gauss curvature in hyperbolic space, J. Differential Geom. 40 (1994), no. 2, 379–409. MR 1293658
- Mathias Rousset, Sur la rigidité de polyèdres hyperboliques en dimension 3: cas de volume fini, cas hyperidéal cas fuchsien, Bull. Soc. Math. France 132 (2004), no. 2, 233–261 (French, with English and French summaries). MR 2075567, DOI 10.24033/bsmf.2465
- Kevin P. Scannell and Michael Wolf, The grafting map of Teichmüller space, J. Amer. Math. Soc. 15 (2002), no. 4, 893–927. MR 1915822, DOI 10.1090/S0894-0347-02-00395-8
- Jean-Marc Schlenker, Surfaces convexes dans des espaces lorentziens à courbure constante, Comm. Anal. Geom. 4 (1996), no. 1-2, 285–331 (French, with English and French summaries). MR 1393565, DOI 10.4310/CAG.1996.v4.n2.a4
- Jean-Marc Schlenker, Métriques sur les polyèdres hyperboliques convexes, J. Differential Geom. 48 (1998), no. 2, 323–405 (French, with English and French summaries). MR 1630178
- J.-M. Schlenker, Hypersurfaces in $H^n$ and the space of its horospheres, Geom. Funct. Anal. 12 (2002), no. 2, 395–435. MR 1911666, DOI 10.1007/s00039-002-8252-x
- Jean-Marc Schlenker, Hyperbolic manifolds with convex boundary, Invent. Math. 163 (2006), no. 1, 109–169. MR 2208419, DOI 10.1007/s00222-005-0456-x
- Jean-Marc Schlenker, Hyperbolic manifolds with convex boundary, Invent. Math. 163 (2006), no. 1, 109–169. MR 2208419, DOI 10.1007/s00222-005-0456-x
- Jean-Marc Schlenker, The renormalized volume and the volume of the convex core of quasifuchsian manifolds, Math. Res. Lett. 20 (2013), no. 4, 773–786. MR 3188032, DOI 10.4310/MRL.2013.v20.n4.a12
- Jean-Marc Schlenker, On the Weyl problem for complete surfaces in the hyperbolic and anti-de Sitter spaces, 2020.
- Jean-Marc Schlenker, The Weyl problem for unbounded convex domains in $\mathbb {H}^{3}$, Preprint, arXiv:2106.02101, 2021.
- Dennis Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984), no. 3-4, 259–277. MR 766265, DOI 10.1007/BF02392379
- William P. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy. MR 1435975, DOI 10.1515/9781400865321
- William P. Thurston, Minimal stretch maps between hyperbolic surfaces, Collected works of William P. Thurston with commentary. Vol. I. Foliations, surfaces and differential geometry, Amer. Math. Soc., Providence, RI, [2022] ©2022, pp. 533–585. 1986 preprint, 1998 eprint. MR 4554454
- I. N. Vekua, Generalized analytic functions, Pergamon Press, London-Paris-Frankfurt; Addison-Wesley Publishing Company, Inc., Reading, MA, 1962. MR 150320
- Friedhelm Waldhausen, On irreducible $3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56–88. MR 224099, DOI 10.2307/1970594
- Hermann Weyl, Uber die bestimmung einer geschlossenen konvexen fläche durch ihr linienelement, Vierteljahrsschrift der naturforschenden Gesellschaft, Zürich, vol. 61, 1916, pp. 40–72.
Bibliographic Information
- Qiyu Chen
- Affiliation: School of Mathematics, South China University of Technology, 510641 Guangzhou, People’s Republic of China
- MR Author ID: 1248105
- ORCID: 0009-0009-7656-4228
- Email: qiyuchen@scut.edu.cn
- Jean-Marc Schlenker
- Affiliation: Department of Mathematics, FSTM, University of Luxembourg, Maison du nombre, 6 avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg
- MR Author ID: 362432
- ORCID: 0000-0002-0853-4512
- Email: jean-marc.schlenker@uni.lu
- Received by editor(s): May 24, 2023
- Received by editor(s) in revised form: April 22, 2024, and November 21, 2024
- Published electronically: March 19, 2025
- Additional Notes: The first author was partially supported by NSFC (No. 12471075, 12101244), Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515012225), and Guangzhou Science and Technology Program (No. 202201010464)
The second author was partially supported by FNR project O20/14766753 - © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 4225-4301
- MSC (2020): Primary 57K32; Secondary 58J05, 58J32
- DOI: https://doi.org/10.1090/tran/9391