Bernstein-Sato polynomial and related invariants for meromorphic functions
HTML articles powered by AMS MathViewer
- by Josep Àlvarez Montaner, Manuel González Villa, Edwin León-Cardenal and Luis Núñez-Betancourt;
- Trans. Amer. Math. Soc. 378 (2025), 4929-4954
- DOI: https://doi.org/10.1090/tran/9390
- Published electronically: January 30, 2025
- HTML | PDF | Request permission
Abstract:
We develop a theory of Bernstein-Sato polynomials for meromorphic functions. As a first application we study the poles of Archimedian local zeta functions for meromorphic germs. We also present a theory of multiplier ideals for meromorphic functions from the analytic and algebraic point of view. It is also shown that the jumping numbers of these multiplier ideals are related with the roots of the Bernstein-Sato polynomials.References
- Maria Alberich-Carramiñana, Josep Àlvarez Montaner, and Ferran Dachs-Cadefau, Constancy regions of mixed multiplier ideals in two-dimensional local rings with rational singularities, Math. Nachr. 291 (2018), no. 2-3, 245–263. MR 3767138, DOI 10.1002/mana.201600392
- Maria Alberich-Carramiñana, Josep Àlvarez Montaner, Ferran Dachs-Cadefau, and Víctor González-Alonso, Multiplicities of jumping points for mixed multiplier ideals, Rev. Mat. Complut. 33 (2020), no. 1, 325–348. MR 4047696, DOI 10.1007/s13163-019-00309-y
- Josep Àlvarez Montaner, A note on Bernstein-Sato ideals, Rev. Un. Mat. Argentina 64 (2023), no. 2, 239–246. MR 4771206
- V. I. Arnol′d, Singularities of fractions and the behavior of polynomials at infinity, Tr. Mat. Inst. Steklova 221 (1998), 48–68 (Russian); English transl., Proc. Steklov Inst. Math. 2(221) (1998), 40–59. MR 1683686
- M. F. Atiyah, Resolution of singularities and division of distributions, Comm. Pure Appl. Math. 23 (1970), 145–150. MR 256156, DOI 10.1002/cpa.3160230202
- I. N. Bernšteĭn, Analytic continuation of generalized functions with respect to a parameter, Funkcional. Anal. i Priložen. 6 (1972), no. 4, 26–40. MR 320735
- I. N. Bernšteĭn and S. I. Gel′fand, Meromorphy of the function $P^{\lambda }$, Funkcional. Anal. i Priložen. 3 (1969), no. 1, 84–85 (Russian). MR 247457
- M. Bocardo-Gaspar, Poles of non-archimedean zeta functions for non-degenerate rational functions, 2020.
- Miriam Bocardo-Gaspar and W. A. Zúñiga-Galindo, Local zeta functions for rational functions and Newton polyhedra, Singularities and foliations. geometry, topology and applications, Springer Proc. Math. Stat., vol. 222, Springer, Cham, 2018, pp. 363–385. MR 3779568, DOI 10.1007/978-3-319-73639-6_{1}2
- Arnaud Bodin and Anne Pichon, Meromorphic functions, bifurcation sets and fibred links, Math. Res. Lett. 14 (2007), no. 3, 413–422. MR 2318645, DOI 10.4310/MRL.2007.v14.n3.a6
- Arnaud Bodin, Anne Pichon, and José Seade, Milnor fibrations of meromorphic functions, J. Lond. Math. Soc. (2) 80 (2009), no. 2, 311–325. MR 2545254, DOI 10.1112/jlms/jdp027
- Nero Budur, Robin van der Veer, Lei Wu, and Peng Zhou, Zero loci of Bernstein-Sato ideals, Invent. Math. 225 (2021), no. 1, 45–72. MR 4270663, DOI 10.1007/s00222-020-01025-x
- Francisco J. Castro Jiménez, Modules over the Weyl algebra, Algebraic approach to differential equations, World Sci. Publ., Hackensack, NJ, 2010, pp. 52–118. MR 2766091, DOI 10.1142/9789814273244_{0}002
- Pierrette Cassou-Noguès and Anatoly Libgober, Multivariable Hodge theoretical invariants of germs of plane curves, J. Knot Theory Ramifications 20 (2011), no. 6, 787–805. MR 2812263, DOI 10.1142/S0218216511009066
- S. C. Coutinho, A primer of algebraic $D$-modules, London Mathematical Society Student Texts, vol. 33, Cambridge University Press, Cambridge, 1995. MR 1356713, DOI 10.1017/CBO9780511623653
- Lawrence Ein, Robert Lazarsfeld, Karen E. Smith, and Dror Varolin, Jumping coefficients of multiplier ideals, Duke Math. J. 123 (2004), no. 3, 469–506. MR 2068967, DOI 10.1215/S0012-7094-04-12333-4
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 (French). MR 238860
- I. M. Gel’fand and G. E. Shilov, Generalized functions. Vol. I: Properties and operations, Academic Press, New York-London, 1964. Translated by Eugene Saletan. MR 166596
- Manuel González Villa and Ann Lemahieu, The monodromy conjecture for plane meromorphic germs, Bull. Lond. Math. Soc. 46 (2014), no. 3, 441–453. MR 3210699, DOI 10.1112/blms/bdt098
- Manuel González Villa, Anatoly Libgober, and Laurenţiu Maxim, Motivic infinite cyclic covers, Adv. Math. 298 (2016), 413–447. MR 3505746, DOI 10.1016/j.aim.2016.04.019
- Manuel González Villa, Anatoly Libgober, and Laurenţiu Maxim, Motivic zeta functions and infinite cyclic covers, Local and global methods in algebraic geometry, Contemp. Math., vol. 712, Amer. Math. Soc., [Providence], RI, [2018] ©2018, pp. 117–141. MR 3832402, DOI 10.1090/conm/712/14345
- Akihiko Gyoja, Bernstein-Sato’s polynomial for several analytic functions, J. Math. Kyoto Univ. 33 (1993), no. 2, 399–411. MR 1231750, DOI 10.1215/kjm/1250519266
- S. M. Guseĭn-Zade, I. Luengo, and A. Mel′e-Èrnadez, Zeta functions of germs of meromorphic functions, and the Newton diagram, Funktsional. Anal. i Prilozhen. 32 (1998), no. 2, 26–35, 95 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 32 (1998), no. 2, 93–99. MR 1647824, DOI 10.1007/BF02482595
- S. M. Guseĭn-Zade, I. Luengo, and A. Mel′e-Èrnandez, On atypical values and local monodromies of meromorphic functions, Tr. Mat. Inst. Steklova 225 (1999), no. Solitony Geom. Topol. na Perekrest., 168–176 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 2(225) (1999), 156–164. MR 1725939
- S. M. Guseĭn-Zade, I. Luengo, and A. Mel′e-Èrnandez, On the topology of germs of meromorphic functions and its applications, Algebra i Analiz 11 (1999), no. 5, 92–99 (Russian); English transl., St. Petersburg Math. J. 11 (2000), no. 5, 775–780. MR 1734347
- Sabir Gusein-Zade, Ignacio Luengo, and Alejandro Melle Hernández, Bifurcations and topology of meromorphic germs, New developments in singularity theory (Cambridge, 2000) NATO Sci. Ser. II Math. Phys. Chem., vol. 21, Kluwer Acad. Publ., Dordrecht, 2001, pp. 279–304. MR 1849313
- Jun-ichi Igusa, Forms of higher degree, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 59, Tata Institute of Fundamental Research, Bombay; Narosa Publishing House, New Delhi, 1978. MR 546292
- Jun-ichi Igusa, An introduction to the theory of local zeta functions, AMS/IP Studies in Advanced Mathematics, vol. 14, American Mathematical Society, Providence, RI; International Press, Cambridge, MA, 2000. MR 1743467, DOI 10.1090/amsip/014
- Masaki Kashiwara, $B$-functions and holonomic systems. Rationality of roots of $B$-functions, Invent. Math. 38 (1976/77), no. 1, 33–53. MR 430304, DOI 10.1007/BF01390168
- Robert Lazarsfeld, Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals. MR 2095472, DOI 10.1007/978-3-642-18808-4
- Edwin León-Cardenal, An explicit formula for the local zeta function of a Laurent polynomial, J. Number Theory 173 (2017), 230–242. MR 3581916, DOI 10.1016/j.jnt.2016.09.019
- E. León-Cardenal and W. A. Zúñiga-Galindo, Local zeta functions for non-degenerate Laurent polynomials over $p$-adic fields, J. Math. Sci. Univ. Tokyo 20 (2013), no. 4, 569–595. MR 3185292
- Ben Lichtin, An upper semicontinuity theorem for some leading poles of $|f|^{2s}$, Complex analytic singularities, Adv. Stud. Pure Math., vol. 8, North-Holland, Amsterdam, 1987, pp. 241–272. MR 894297, DOI 10.2969/aspm/00810241
- B. Lichtin, Poles of $|f(z,w)|^{2s}$ and roots of the $b$-function, Ark. Mat. 27 (1989), no. 2, 283–304. MR 1022282, DOI 10.1007/BF02386377
- Philippe Maisonobe, Filtration relative, l’idéal de Bernstein et ses pentes, Rend. Semin. Mat. Univ. Padova 150 (2023), 81–125 (French, with English and French summaries). MR 4651692, DOI 10.4171/rsmup/101
- Tat Thang Nguyen and Kiyoshi Takeuchi, Correction to: Meromorphic nearby cycle functors and monodromies of meromorphic functions (with appendix by T. Saito), Rev. Mat. Complut. 37 (2024), no. 1, 321–322. MR 4695866, DOI 10.1007/s13163-022-00440-3
- Anne Pichon and José Seade, Fibred multilinks and singularities $f\overline g$, Math. Ann. 342 (2008), no. 3, 487–514. MR 2430986, DOI 10.1007/s00208-008-0234-3
- Michel Raibaut, Motivic Milnor fibers of a rational function, C. R. Math. Acad. Sci. Paris 350 (2012), no. 9-10, 519–524 (English, with English and French summaries). MR 2929060, DOI 10.1016/j.crma.2012.04.021
- Michel Raibaut, Motivic Milnor fibers of a rational function, Rev. Mat. Complut. 26 (2013), no. 2, 705–734. MR 3068616, DOI 10.1007/s13163-013-0118-2
- C. Sabbah, Proximité évanescente. II. Équations fonctionnelles pour plusieurs fonctions analytiques, Compositio Math. 64 (1987), no. 2, 213–241 (French, with English summary). MR 916482
- Mikio Sato and Takuro Shintani, On zeta functions associated with prehomogeneous vector spaces, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 1081–1082. MR 296079, DOI 10.1073/pnas.69.5.1081
- Dirk Siersma and Mihai Tibăr, On the vanishing cycles of a meromorphic function on the complement of its poles, Real and complex singularities, Contemp. Math., vol. 354, Amer. Math. Soc., Providence, RI, 2004, pp. 277–289. MR 2087815, DOI 10.1090/conm/354/06485
- Kiyoshi Takeuchi, On a Bernstein-Sato polynomial of a meromorphic function, Nagoya Math. J. 251 (2023), 715–733. MR 4637148, DOI 10.1017/nmj.2023.10
- Mihai Tibăr, Singularities and topology of meromorphic functions, Trends in singularities, Trends Math., Birkhäuser, Basel, 2002, pp. 223–246. MR 1900789
- Willem Veys and W. A. Zúñiga-Galindo, Zeta functions and oscillatory integrals for meromorphic functions, Adv. Math. 311 (2017), 295–337. MR 3628217, DOI 10.1016/j.aim.2017.02.022
Bibliographic Information
- Josep Àlvarez Montaner
- Affiliation: Departament de Matemàtiques and Institut de Matemàtiques de la UPC-Barcelona Tech (IMTech), Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona 08028, Spain; and Centre de Recerca Matemàtica (CRM), Bellaterra, Barcelona 08193, Spain
- ORCID: 0000-0001-6793-368X
- Email: josep.alvarez@upc.edu
- Manuel González Villa
- Affiliation: Centro de investigación en Matemáticas, Apartado Postal 402, C.P. 36000, Guanajuato, GTO, México; and (temporarily) Departamento de Matemáticas, IUMA, Universidad de Zaragoza C. Pedro Cerbuna 12, 50009 Zaragoza, Spain
- ORCID: 0000-0002-0370-3401
- Email: manuel.gonzalez@cimat.mx, m.gonzalez@unizar.es
- Edwin León-Cardenal
- Affiliation: Departamento de Matemáticas y Computación, Universidad de La Rioja, C. Madre de Dios 53, 26006 Logroño, Spain; CONAHCYT–Centro de investigación en Matemáticas, Unidad Zacatecas, Av. Lasec Andador Galileo Galilei, Manzana 3 Lote 7, C.P. 98160, Zacatecas, ZAC, México
- ORCID: 0000-0002-3171-0334
- Email: edwin.leon@unirioja.es, edwin.leon@cimat.mx
- Luis Núñez-Betancourt
- Affiliation: Centro de investigación en Matemáticas, Apartado Postal 402, C.P. 36000, Guanajuato, GTO, México
- MR Author ID: 949465
- Email: luisnub@cimat.mx
- Received by editor(s): December 23, 2022
- Received by editor(s) in revised form: September 14, 2024, and December 22, 2024
- Published electronically: January 30, 2025
- Additional Notes: The first author was partially supported by the projects PID2019-103849GB-I00 and PID2023-146936NB-I00 financed by the Spanish State Agency MCIN/AEI/10.13039/501100011033/ FEDER, UE, by the GEOMVAP 2021-SGR-00603 AGAUR project and Spanish State Research Agency, through the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R$\&$D (project CEX2020-001084-M)
The second author was partially supported by CONACyT Grant No. 320393, by MCIN/AEI/10.13039/501100011033 (codes PID2020-114750GB-C31 and PID2020-114750GB-C33), by Departamento de Ciencia, Universidad y Sociedad del Conocimiento del Gobierno de Aragón (grant code: E22_20R: “Álgebra y Geometría”), and by the European Union NextGenerationEU/PRTR and UNIZAR via María Zambrano’s Program.
The third author was partially supported by MCIN/AEI/10.13039/501100011033 (grant code: PID2020-114750GB-C31) and by Departamento de Ciencia, Universidad y Sociedad del Conocimiento del Gobierno de Aragón (grant code: E22_20R: “Álgebra y Geometría”). Funded by the European Union NextGenerationEU/PRTR and UNIZAR via María Zambrano’s Program and also partially supported by CONAHCYT project CF-2023-G33.
The fourth author was partially supported by CONAHCyT Grants 284598, CBF 2023-2024-224, CF-2023-G-33 and Cátedras Marcos Moshinsky. - Dedicated: In memory of Professor Roberto Callejas-Bedregal
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 4929-4954
- MSC (2020): Primary 14F10; Secondary 46F10, 32S45, 14E15, 14F18, 13N10
- DOI: https://doi.org/10.1090/tran/9390