Multi-indices coproducts from ODEs to singular SPDEs
HTML articles powered by AMS MathViewer
- by Yvain Bruned and Yingtong Hou;
- Trans. Amer. Math. Soc. 378 (2025), 4903-4928
- DOI: https://doi.org/10.1090/tran/9411
- Published electronically: March 4, 2025
- HTML | PDF | Request permission
Abstract:
In this work, we introduce explicit formulae for the coproducts at play for multi-indices in ODEs and in singular SPDEs. The two coproducts described correspond to versions of the Butcher-Connes-Kreimer and extraction-contraction coproducts with multi-indices. The main idea is to use the fact that the coproducts are the adjoint of dual products for which one has an explicit simple formula. We are able to derive the explicit formulae via an inner product defined from a symmetry factor easily computable for multi-indices.References
- I. Bailleul and Y. Bruned, Locality for singular stochastic PDEs, arXiv:2109.00399 (2021).
- Y. Bruned, A. Chandra, I. Chevyrev, and M. Hairer, Renormalising SPDEs in regularity structures, J. Eur. Math. Soc. (JEMS) 23 (2021), no. 3, 869–947. MR 4210726, DOI 10.4171/jems/1025
- Y. Bruned, I. Chevyrev, P. K. Friz, and R. Preiß, A rough path perspective on renormalization, J. Funct. Anal. 277 (2019), no. 11, 108283, 60. MR 4013830, DOI 10.1016/j.jfa.2019.108283
- Y. Bruned and V. Dotsenko, Novikov algebras and multi-indices in regularity structures, arXiv:2311.09091 (2023).
- Yvain Bruned, Kurusch Ebrahimi-Fard, and Yingtong Hou, Multi-indice $B$-series, J. Lond. Math. Soc. (2) 111 (2025), no. 1, Paper No. e70049, 32. MR 4841156, DOI 10.1112/jlms.70049
- Y. Bruned, M. Hairer, and L. Zambotti, Algebraic renormalisation of regularity structures, Invent. Math. 215 (2019), no. 3, 1039–1156. MR 3935036, DOI 10.1007/s00222-018-0841-x
- Yvain Bruned and Foivos Katsetsiadis, Post-Lie algebras in regularity structures, Forum Math. Sigma 11 (2023), Paper No. e98, 20. MR 4662283, DOI 10.1017/fms.2023.93
- Yvain Bruned and Pablo Linares, A top-down approach to algebraic renormalization in regularity structures based on multi-indices, Arch. Ration. Mech. Anal. 248 (2024), no. 6, Paper No. 111, 81. MR 4821873, DOI 10.1007/s00205-024-02041-4
- Yvain Bruned and Dominique Manchon, Algebraic deformation for (S)PDEs, J. Math. Soc. Japan 75 (2023), no. 2, 485–526. MR 4578048, DOI 10.2969/jmsj/88028802
- Y. Bruned, Recursive formulae in regularity structures, Stoch. Partial Differ. Equ. Anal. Comput. 6 (2018), no. 4, 525–564. MR 3867706, DOI 10.1007/s40072-018-0115-z
- Y. Bruned, Composition and substitution of Regularity Structures $B$-series, arXiv:2310.14242 (2023).
- Damien Calaque, Kurusch Ebrahimi-Fard, and Dominique Manchon, Two interacting Hopf algebras of trees: a Hopf-algebraic approach to composition and substitution of B-series, Adv. in Appl. Math. 47 (2011), no. 2, 282–308. MR 2803804, DOI 10.1016/j.aam.2009.08.003
- J. C. Butcher, An algebraic theory of integration methods, Math. Comp. 26 (1972), 79–106. MR 305608, DOI 10.1090/S0025-5718-1972-0305608-0
- A. Chandra and M. Hairer, An analytic BPHZ theorem for regularity structures, arXiv:1612.08138 (2016).
- P. Chartier, E. Hairer, and G. Vilmart, A substitution law for B-series vector fields, INRIA Report, no. 5498 (2005). https://inria.hal.science/inria-00070509.
- Philippe Chartier, Ernst Hairer, and Gilles Vilmart, Algebraic structures of B-series, Found. Comput. Math. 10 (2010), no. 4, 407–427. MR 2657947, DOI 10.1007/s10208-010-9065-1
- Alain Connes and Dirk Kreimer, Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys. 199 (1998), no. 1, 203–242. MR 1660199, DOI 10.1007/s002200050499
- Askar Dzhumadil′daev and Clas Löfwall, Trees, free right-symmetric algebras, free Novikov algebras and identities, Homology Homotopy Appl. 4 (2002), no. 2, 165–190. The Roos Festschrift volume, 1. MR 1918188, DOI 10.4310/hha.2002.v4.n2.a8
- Kurusch Ebrahimi-Fard, Alexander Lundervold, and Hans Z. Munthe-Kaas, On the Lie enveloping algebra of a post-Lie algebra, J. Lie Theory 25 (2015), no. 4, 1139–1165. MR 3350091
- X. Gao, D. Manchon, and Z. Zhu, Free Novikov algebras and the Hopf algebra of decorated multi-indices, arXiv:2404.09899 (2024).
- J.-M. Oudom and D. Guin, On the Lie enveloping algebra of a pre-Lie algebra, J. K-Theory 2 (2008), no. 1, 147–167. MR 2434170, DOI 10.1017/is008001011jkt037
- Jean-Michel Oudom and Daniel Guin, Sur l’algèbre enveloppante d’une algèbre pré-Lie, C. R. Math. Acad. Sci. Paris 340 (2005), no. 5, 331–336 (French, with English and French summaries). MR 2127105, DOI 10.1016/j.crma.2005.01.010
- R. S. Gvalani and M. Tempelmayr, Stochastic estimates for the thin-film equation with thermal noise, arXiv:2309.15829 (2023).
- M. Hairer, A theory of regularity structures, Invent. Math. 198 (2014), no. 2, 269–504. MR 3274562, DOI 10.1007/s00222-014-0505-4
- J.-D. Jacques and L. Zambotti, Post-Lie algebras of derivations and regularity structures, arXiv:2306.02484.
- Pablo Linares, Felix Otto, and Markus Tempelmayr, The structure group for quasi-linear equations via universal enveloping algebras, Commun. Am. Math. Soc. 3 (2023), 1–64. MR 4537770, DOI 10.1090/cams/16
- P. Linares, Insertion pre-Lie products and translation of rough paths based on multi-indices, arXiv:2307.06769 (2023).
- P. Linares and F. Otto, A tree-free approach to regularity structures: the regular case for quasi-linear equations, arXiv:2207.10627 (2022).
- Pablo Linares, Felix Otto, Markus Tempelmayr, and Pavlos Tsatsoulis, A diagram-free approach to the stochastic estimates in regularity structures, Invent. Math. 237 (2024), no. 3, 1469–1565. MR 4777092, DOI 10.1007/s00222-024-01275-z
- Hans Munthe-Kaas and Olivier Verdier, Aromatic Butcher series, Found. Comput. Math. 16 (2016), no. 1, 183–215. MR 3451427, DOI 10.1007/s10208-015-9245-0
- F. Otto, J. Sauer, S. Smith, and H. Weber, A priori bounds for quasi-linear SPDEs in the full sub-critical regime, J. Eur. Math. Soc. (2024). \PrintDOI{10.4171/JEMS/1574}.
- Felix Otto, Kihoon Seong, and Markus Tempelmayr, Lecture notes on tree-free regularity structures, Mat. Contemp. 58 (2023), 150–196. MR 4683413, DOI 10.21711/231766362023/rmc584
- M. Tempelmayr, Characterizing models in regularity structures: a quasilinear case, Probab. Theory Relat. Fields (2024), 1–57. \PrintDOI{10.1007/s00440-024-01292-2}.
Bibliographic Information
- Yvain Bruned
- Affiliation: Université de Lorraine, CNRS, IECL, F-54000 Nancy, France
- MR Author ID: 952078
- Email: yvain.bruned@univ-lorraine.fr
- Yingtong Hou
- Affiliation: Université de Lorraine, CNRS, IECL, F-54000 Nancy, France
- ORCID: 0009-0001-6201-5684
- Email: yingtong.hou@univ-lorraine.fr
- Received by editor(s): June 7, 2024
- Received by editor(s) in revised form: November 17, 2024, and December 21, 2024
- Published electronically: March 4, 2025
- Additional Notes: The first author was supported from the European Research Council (ERC) through the ERC Starting Grant Low Regularity Dynamics via Decorated Trees (LoRDeT), grant agreement No. 101075208.
- © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 4903-4928
- MSC (2020): Primary 60H15, 60L70, 16T05
- DOI: https://doi.org/10.1090/tran/9411