Filtration and splitting of the Hodge bundle on the nonvarying strata of quadratic differentials
HTML articles powered by AMS MathViewer
- by Dawei Chen and Fei Yu;
- Trans. Amer. Math. Soc. 378 (2025), 5057-5086
- DOI: https://doi.org/10.1090/tran/9416
- Published electronically: March 19, 2025
- HTML | PDF | Request permission
Abstract:
We describe the Harder–Narasimhan filtration of the Hodge bundle for Teichmüller curves in the nonvarying strata of quadratic differentials appearing in the work of Dawei Chen and Martin Möller [Ann. Sci. ’Ec. Norm. Sup’er. (4) 47 (2014), pp. 309–369]. Moreover, we show that the Hodge bundle on the nonvarying strata away from the irregular components can split as a direct sum of line bundles. As applications, we determine all individual Lyapunov exponents of algebraically primitive Teichmüller curves in the nonvarying strata and derive new results regarding the asymptotic behavior of Lyapunov exponents.References
- David Aulicino, Affine manifolds and zero Lyapunov exponents in genus 3, Geom. Funct. Anal. 25 (2015), no. 5, 1333–1370. MR 3426056, DOI 10.1007/s00039-015-0339-2
- Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, and Antonius Van de Ven, Compact complex surfaces, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 4, Springer-Verlag, Berlin, 2004. MR 2030225, DOI 10.1007/978-3-642-57739-0
- Matt Bainbridge, Dawei Chen, Quentin Gendron, Samuel Grushevsky, and Martin Möller, Compactification of strata of Abelian differentials, Duke Math. J. 167 (2018), no. 12, 2347–2416. MR 3848392, DOI 10.1215/00127094-2018-0012
- Matt Bainbridge, Dawei Chen, Quentin Gendron, Samuel Grushevsky, and Martin Möller, Strata of $k$-differentials, Algebr. Geom. 6 (2019), no. 2, 196–233. MR 3914751, DOI 10.14231/ag-2019-011
- M. Bainbridge, D. Chen, Q. Gendron, S. Grushevsky, and M. Möller, The moduli space of multi-scale differentials, arXiv:1910.13492.
- Matt Bainbridge, Philipp Habegger, and Martin Möller, Teichmüller curves in genus three and just likely intersections in $\textbf {G}^n_m\times \textbf {G}^n_a$, Publ. Math. Inst. Hautes Études Sci. 124 (2016), 1–98. MR 3578914, DOI 10.1007/s10240-016-0084-6
- Dave Bayer and David Eisenbud, Ribbons and their canonical embeddings, Trans. Amer. Math. Soc. 347 (1995), no. 3, 719–756. MR 1273472, DOI 10.1090/S0002-9947-1995-1273472-3
- Christian Bonatti, Alex Eskin, and Amie Wilkinson, Projective cocycles over $SL(2,\Bbb R)$ actions: measures invariant under the upper triangular group, Astérisque 415 (2020), 157–180 (English, with English and French summaries). Some aspects of the theory of dynamical systems: a tribute to Jean-Christophe Yoccoz. Vol. I. MR 4142450, DOI 10.24033/ast
- Andrei Bud, The image in $\mathcal {M}_g$ of strata of meromorphic and quadratic differentials, Math. Z. 298 (2021), no. 3-4, 975–988. MR 4282116, DOI 10.1007/s00209-020-02644-z
- Dawei Chen, Affine geometry of strata of differentials, J. Inst. Math. Jussieu 18 (2019), no. 6, 1331–1340. MR 4021107, DOI 10.1017/s1474748017000445
- Dawei Chen, Nonvarying, affine and extremal geometry of strata of differentials, Math. Proc. Cambridge Philos. Soc. 176 (2024), no. 2, 361–371. MR 4706775, DOI 10.1017/s0305004123000567
- Dawei Chen and Martin Möller, Nonvarying sums of Lyapunov exponents of Abelian differentials in low genus, Geom. Topol. 16 (2012), no. 4, 2427–2479. MR 3033521, DOI 10.2140/gt.2012.16.2427
- Dawei Chen and Martin Möller, Quadratic differentials in low genus: exceptional and non-varying strata, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 2, 309–369 (English, with English and French summaries). MR 3215925, DOI 10.24033/asens.2216
- Dawei Chen, Martin Möller, and Adrien Sauvaget, Masur-Veech volumes and intersection theory: the principal strata of quadratic differentials, Duke Math. J. 172 (2023), no. 9, 1735–1779. MR 4608330, DOI 10.1215/00127094-2022-0063
- Alex Eskin, Simion Filip, and Alex Wright, The algebraic hull of the Kontsevich-Zorich cocycle, Ann. of Math. (2) 188 (2018), no. 1, 281–313. MR 3815463, DOI 10.4007/annals.2018.188.1.5
- Alex Eskin, Maxim Kontsevich, and Anton Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, Publ. Math. Inst. Hautes Études Sci. 120 (2014), 207–333. MR 3270590, DOI 10.1007/s10240-013-0060-3
- Alex Eskin, Maxim Kontsevich, Martin Möller, and Anton Zorich, Lower bounds for Lyapunov exponents of flat bundles on curves, Geom. Topol. 22 (2018), no. 4, 2299–2338. MR 3784522, DOI 10.2140/gt.2018.22.2299
- Charles Fougeron, Lyapunov exponents of the Hodge bundle over strata of quadratic differentials with large number of poles, Math. Res. Lett. 25 (2018), no. 4, 1213–1225. MR 3882161, DOI 10.4310/MRL.2018.v25.n4.a8
- Joe Harris and Ian Morrison, Moduli of curves, Graduate Texts in Mathematics, vol. 187, Springer-Verlag, New York, 1998. MR 1631825
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157, DOI 10.1007/978-1-4757-3849-0
- Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. MR 1450870, DOI 10.1007/978-3-663-11624-0
- Martin Möller, Variations of Hodge structures of a Teichmüller curve, J. Amer. Math. Soc. 19 (2006), no. 2, 327–344. MR 2188128, DOI 10.1090/S0894-0347-05-00512-6
- M. Kontsevich and A. Zorich. Lyapunov exponents and Hodge theory, arXiv:hepth/9701164.
- Erwan Lanneau, Connected components of the strata of the moduli spaces of quadratic differentials, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 1, 1–56 (English, with English and French summaries). MR 2423309, DOI 10.24033/asens.2062
- Henry C. Pinkham, Deformations of algebraic varieties with $G_{m}$ action, Astérisque, No. 20, Société Mathématique de France, Paris, 1974. MR 376672
- Fei Yu and Kang Zuo, Weierstrass filtration on Teichmüller curves and Lyapunov exponents, J. Mod. Dyn. 7 (2013), no. 2, 209–237. MR 3106711, DOI 10.3934/jmd.2013.7.209
- F. Yu and K. Zuo, Weierstrass filtration on Teichmüller curves and Lyapunov exponents: Upper bounds, arXiv:1209.2733.
- Fei Yu, Eigenvalues of curvature, Lyapunov exponents and Harder-Narasimhan filtrations, Geom. Topol. 22 (2018), no. 4, 2253–2298. MR 3784521, DOI 10.2140/gt.2018.22.2253
Bibliographic Information
- Dawei Chen
- Affiliation: Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02467
- MR Author ID: 848983
- ORCID: 0000-0002-3926-2636
- Email: dawei.chen@bc.edu
- Fei Yu
- Affiliation: School of Mathematical Sciences, Zhejiang University, Hangzhou, China
- Email: yufei@zju.edu.cn
- Received by editor(s): June 29, 2023
- Received by editor(s) in revised form: January 15, 2025
- Published electronically: March 19, 2025
- Additional Notes: Research of the first author was supported by National Science Foundation Grants DMS-2301030, DMS-2001040, Simons Travel Support for Mathematicians, and Simons Fellowship.
Research of the second author was supported by the National Natural Science Foundation of China under Grant No. 11871422 and the Fundamental Research Funds for the Central Universities 107101*17221022301(2021FZZX001-01). - © Copyright 2025 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 5057-5086
- MSC (2020): Primary 14H10, 32G15
- DOI: https://doi.org/10.1090/tran/9416