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14[L].—James Nicholas Sarmousakis (1912- ), Tables of associated

Legendre functions with complex argument. Manuscript and film in pos-

session of the author. Film copies at the Mathematical Tables Project,

New York City, and in the Library of Brown University.

The Tables of Pnm{ix) and of Qnm(ix) are as follows:

Pnm(ix), x = 0(.1)5 for n = 1(1)5, x = 0(.1)2.5 for n = 6, x = 0(.1)1.4 for n = 7(1)9,
x = 0.1(.1)1 for n = 10(1)12, * = 0.1(.1)0.8 for n = 13, 14, x = 0.7 for n = 15(1)18,

and m = 0(l)n.

Qnm(ix), x = 0(.1)1.4 for n = 0(1)9, x = 0.1(.1)1 for n = 10(1)12, x = 0.1(.1)0.8 for
n = 13, 14, x = 0.7 for n = 15(1)18, and m = 0(1)(« + 1). The tables range from 4S

to 20S, mostly between 10S and 15S.

The computation of these tables was done only once and the sole auxiliary tables used

in their preparation were the Tables of the First Ten Powers of the Integers from 1 to 1,000,

New York, Project for the Computation of Mathematical Tables, 1938. A few miscellaneous

checks have been made. As yet there has been no appropriate rounding off to a suitable

number of significant figures.

I have used the tables to evaluate relative dissociation constants of substituted benzoic

acids which were computed on the basis of an electrostatic theory of substituent effects.

J. N. Sarmousakis

Aberdeen Proving Grounds

Such tables are also of use for computing potentials, flow and diffusion about disks and

rods.—Editor.

MECHANICAL AIDS TO COMPUTATION

6[Z].—Simpson Leroy Brown (1881- ), "A mechanical harmonic

synthesizer-analyzer," Franklin Institute, Jn., v. 228, 1939, p. 675-694.

The 30-term synthesizer-analyzer described in this paper is perhaps the largest machine

of its kind having so few harmonic components. It is 15 feet long and 7 feet high and

weighs nearly a ton. This may be compared with the old Michelson and Stratton1 80-term

machine which is about 3 feet long and 4 feet high. The reasons for building the machine

on a large scale were to gain accuracy and to save labor. The driving mechanism, for ex-

ample, is a train of 22 spur gears which, though of only commercial grade, are large enough

so that more accuracy is obtained than with small expensive precision made gears.

Two simple harmonic motions, out of phase by 90°, are generated at both ends of 15

rotating shafts by Scotch crossheads. This gives 15 sine terms and 15 cosine terms in the

corresponding Fourier series. The two fundamental motions are capable of amplitudes up

to 16 centimeters while even the components of highest frequency may be set with ampli-

tudes as great as 4 centimeters. Thus the machine draws curves well over a foot in overall

width. The 30 harmonic motions are added, in the usual manner, by an endless fine chain

passing over pulleys.

Harmonic analysis to, say, 60 terms could be performed by pencil and paper methods,

better still by commercial computing machines; it may also be done entirely mechanically

with a 60-term analyzer. The author points out that a combination of the two methods is

not only possible but indeed desirable, and that by using an accurate synthesizer with com-

paratively few harmonic elements one can make analyses that include many harmonic

elements by applying a little pencil and paper before and after using the analyzer.

This may be illustrated as follows. Let y = f(x) be the subject of analysis, a periodic

function defined empirically by 64 of its equally spaced arguments (yi, yi, ■ • ■ ye,). We wish
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to find constants An and B„ so that

y = f{x) = 2 ( An cos —— + Bn sin —— )
n-i^ 64 64 /

Our machine will calculate expressions of the type

tt\ v     v ( 2wtnx . 2Ttnx\
(1) Y = 2, I am cos —— + 6„ sin —— 1

m-i * 32 32 /

Before using the machine we prepare 60 constants

am,      b„,      am',      bm',      (m = 1, 2, • • •, IS)

defined in terms of the given y's by

Cm = y»l — y32-m ~ y32+m + y64-i»

bm = ym + y32-m — ys2+m    " Vti-m

am' = ym + yai-m + y32+m + Vei-m

bm' = Vm — y32-m + ^32+1» ~ Vti-m

Setting the amplitudes am, bm on the machine we draw the curve represented by (1) and

take therefrom 64 equally spaced ordinates (Ki, Y2, Y6i). Actually, no curve need be

drawn and measured; the machine simply is stopped and read 64 times at equal angle

intervals. Similarly am' and bm' lead to (IV, F2', • • •, Fe/). The desired numbers An and Bn

may now be found as simple combinations of the Y, Y', and yn, y3i, ya, y^A. Thus for

j = 1,2, • • •, 16 we have

64^2;-i = F2,-i + F64_2;+i + 2(y64 - yn)

64£2l-_i = F2i_i - Yu-ii+i + 2(- l)'(y48 - y„,)

64/4„• = F'y + F'64_y + 2(y64 + y32) + 2(- l)'(y48 + yit)

64B2i = F'y - F'64_y

The author gives also a corresponding scheme for the analysis of a function defined by 120

equally spaced ordinates. This involves the use of the machine four times.

The paper contains 6 cuts taken from drawings made by the machine. Amplitudes as

small as 1/10 mm. are said to be discernible. For extreme sensitivity in drawing, the tracing

point is replaced by a beam of light sharply focused on photographic paper. As indicated

above however, drawing curves is an activity of the machine which is of secondary impor-

tance to the business of accurate harmonic analysis, but is of much more importance to the

other uses to which the machine is put. These will be taken up in a later review.

D. H. L.

1 A. A. Michelson and S. W. Stratton, "A new harmonic analyzer," Amer. Jn. Sei.,
v. 155, or s. 4, v. 5, 1898, p. 1-13 + plate.

7[Z].—S. L. Brown and Lisle Lorenzo Wheeler (1904- ), "A me-
chanical method for graphical solution of polynomials," Franklin Insti-

tute, Jn., v. 231, 1941, p. 223-243.

This paper discusses the application of the harmonic synthesizer, described in the

preceding review, to the problem of graphing a polynomial function of a complex variable

with a view to obtaining the roots of the polynomial.

The method is one suggested in 1928 by A. J. Kempner and applied by a specially

constructed machine, designed by T. C. Fry, by the Bell Telephone Laboratories and called

the Isograph.1

The present machine is capable of handling equations up to the 15th degree.

Briefly the method is as follows.

Let
2 = r(cos 0 + i sin 0)
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be a complex variable. If

k

f(x) = 2 a„xn = 0

is the equation under discussion, the machine is set to draw the map M in the if-plane of

the circle

W-r
under the transformation

k

w = 2 a„r" (cos nO + i sin n$).
n-I

The number of times this map encircles the point w = — a0 is the number of roots within

the circle |z| = r. By choosing different values of r and inspecting the different maps, a

value of r is soon found whose map passes through the point w = — a0. This value of r is

the absolute value of one root of/(x) = 0. The argument of this root is the angle 6 read on

the machine just as the tracing point reaches the point w = — a<j.

To draw these maps the sine elements of the machine are used to drive the tracing point

up and down while the cosine elements are used to drive the drawing board back and forth.

The amplitude (for a fixed r) set on the nth crosshead is | a„ \ r". If <z„ is not real, its argument

is set by giving the crosshead an appropriate initial angular displacement. A dozen or more

of these maps are illustrated in the paper.

A second method applicable to real roots only is given. Suppose that one wishes to

find all the real roots of /(x) = 0 that lie between —r and +r. Substitute x = r cos 6 in

k

f(x) = 2 a„x". Since cos" 8 is a linear combination of cos nd, cos (n — 2)9, • • •, the poly-

nomial /(x) is reduced to a series of cosines which the machine can draw in one application.

The real roots of /(x) =0 (and indeed any other features of the graph of/(x) for-r£jc£r)

can then be read from this graph. The paper offers convincing evidence that this harmonic

synthesizer is a powerful tool for studying polynomials and their roots.

D. H. L.

1 Bell Laboratories Record, v. 16, 1937, R. L. Dietzold, "The isograph—a mechanical
root-finder," p. 130-134; R. O. Mercner, "The mechanism of the isograph," p. 135-140.

NOTES

10. Briggs and Vieta.—That Briggs in early years of the seventeenth

century should have computed a "canon of sines," and of other functions,

for every hundredth of a degree in the quadrant, is a notable fact, and that

he was probably mainly led to this choice of argument by a passage in

Vieta's Relatio Calendarii vere Gregoriani, Paris, 1600 is of special interest.

The passage on p. 1 of his Trigonometric Britannica (1633) where Briggs

tells us this is, in translation from the Latin, as follows: "Therefore we divide

any circumference into 360 parts which we call degrees; and each degree we

divide sexagesimally into minutes and seconds, etc. But I, induced by the

authority of Vieta 'pag. 29. Calendarij Gregoriani,' and on the advice of

others, divide degrees by the decimal system into 100 primary parts, and

each of these into 10 parts, of which each one is divided in the same way.

And these parts give a much easier, and not less certain method of calcula-

tion." With too hasty a glance at this passage I made an incorrect state-

ment (which might have been corrected with the change of a single word)

on page 33, line 12; see Corrigenda, p. 100. Since Vieta's Relatio of 1600 is


