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3S9[A].—A. L. Crelle, Rechentafeln welche alles Multiplizieren und Dividieren

mit Zahlen unter Tausend ganz ersparen, bei grosser en Zahlen aber die

Rechnung erleichtern und sicherer machen. Neue Ausgabe besorgt von 0.

Seeliger [1907]. Neudruck, mit Tafeln der Quadrat- und Kubikzahlen von

1-1000. Berlin, Gruyter, 1944. viii, 501 p. 24.8 X 36.7 cm. See also
MTAC,v. 2, p. 179.

A. L. Crelle (1780-1855) was the founder (1826) of a notable mathematical research

journal still in existence, and author of various volumes, including even one on music (1823).

His calculating tables, of which there have been many editions in English, French, and

German, was first published in two small volumes over 125 years ago, Berlin, 1820. But in

such editions, since 1857 at least, the folio format (each page containing four pages of the

first edition) has been in use up to the present. As the title indicates the war edition under

review contains two extra pages with the squares and cubes of numbers N, N = 1(1)999.

A one-volume Japanese edition of Crelle's tables by Tsuneta Yano, Tokyo, 1913, has been

referred to, MTAC, v. 2, p. 18; our incidental note, v. 1, p. 436, that this was published by

an insurance company, is incorrect. This fact was learned after Mr. Edwin G. Beal, Jr.,

Chief of the Japanese Division in Library of Congress had kindly made a study of the volume

for us. He also reported that he could find no record of a 1927 Japanese edition of this work.

R. C. A.

360[A, B, F].—J. Ser, La Numération et le Calcul des Nombres, Paris,

Gauthier-Villars, 1944, 194 p., 25 X 16 cm.

The author of this work appears to be something of an individualist. He gives but one

reference to the work of others and this is to an article on the foundations of mathematics,

a subject not covered in this book. The reader will find many new points of view, "méthodes

personelles," and unfamiliar nomenclature. Much of this has to do with pencil and paper

calculation, a discipline all but unknown in this age of mechanized computation.

The more extensive tables in this work may be described as follows:

(i) An arithmetical table (p. 60-95) giving for the first 1000 integers N the following

functions:
1/iV to 6D, the first nine multiples of N (these are used to facilitate multiplication

and division), N*, VW to 4D, 4ÎÔN to 4D, W, N* to 4D, (10W)» to 3D, and (lOOiV)l to 3D.
(ii) A small table, p. 96, of powers n* for n = 1(1)9, k = 1(1)16, the first nine multiples

of 10*, 10', 100' (all but five values have last-digit errata) and the fourth roots of wlO*,

m = 1(1)9,* =1,2,3 to4D.
(iii) A table of the roots x of the linear congruence

Rx m D (mod B)

where R and B range over the first 50 integers and D is the greatest common divisor of R

and B (p. 100-101). The reader will find that values of R are given as column headings.

(iv) A table of the residues with respect to each of the moduli 2, 3, 5, and 7 of the first

210 integers arranged in two ways (p. 122-123).

(v) A factor table for each of the first 1000 integers except multiples of 10. To save

space composite numbers are usually broken into only two factors, one of which is often a

composite number (p. 144-145).
(vi) A factor table for those numbers between 1000 and 10000 which are prime to 30.

Beyond 4020 only the least prime factor is given if the number is composite (p. 146-149).

(vii) A condensed factor table for numbers under 210000, not divisible by 2, 3, 5, or 7.

This 12-page table (p. 150-161) is reminiscent of an unfinished project of E. Lebon,1 and

is too complicated to describe here in detail. The reader is warned to study directions before
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attempting to use the table. For composite numbers whose least factor exceeds 210, the

table yields the two factors at one "coup d'oeil," that is, after a little hunting. For other

numbers some mental calculation involving the factoring of 10 or sometimes 25 three-digit

numbers is necessary.

D. H. L.

1 E, Lebon, Table de Caractéristiques de Base 30 030 donnant, en un seul Coup d'Oeil,
Us Facteurs Premiers des Nombres Premiers avec 30 030 et Inférieurs à 901 800 900, v. 1,
pt. 1, Paris, 1920.

361 [B].—Albert Gloden, Table des Bicarrés X* pour 1000 < X ^ 3000,
Luxembourg, author, rue Jean Jaurès 11, 1946. Offset printing on one

side of each of 17 leaves, with paper cover. 20.5 X 29.7 cm.

There is no text. The values of X* for X = 1001(1)1099 check with the values given

in BAASMTC, Mathematical Tables, v. 9, 1940, p. 122-123. Some of the printing is unclear

so that a "3," one case tested, X = 1003, might easily be mistaken for a "5." This table

was made preparatory to writing the paper reviewed in RMT 348.

R. C. A.

362[D].—Josef Krovák, Natürliche Zahlen der Funktion Cotangens für

Winkel in Zentesimalteilung von 0" bis 100". Prague, Landesvermessungs-

amt Böhmen und Mähren, second ed., 1943. iii, 396 p. 15.5 X 21.5 cm.

The one-page explanation (dated Prague, 1943) of these tables says that they had

already been announced in the Sechsstellige Tafeln der natürlichen Werte der Funktionen

Sinus und Cosinus für Winkel in Zentesimalteilung that the Finance Minister had published

in the previous year.

The tables were brought into being for use with trigonometrical survey calculations

with twin calculating machines where the accuracy of measurement is of the order of

2" (0".6) or slightly better. In other words, it provides six significant figure values for

working to 0".0001 or 1" or one centesimal second or about one third of a sexagesimal second.

They are a further outcome of Hitler's decree that German surveyors were to use the

centesimal division of the quadrant.

The principal survey problem that is facilitated by cotangents and twin machines is

that of intersection, i.e. the determination of the co-ordinates of a point whose bearings

from two known points have been measured.

The lay-out is shown by the following table:

Pages From To Interval Diff. for l"

1- 20 0» 1'                    1" None
21-160 1 15                      2 63.6 to   1.5

161-230 15 50 10 2.9 to   0.3
231-316 50 93 10 3.2 to   1.5
317-376 93 99                      2 1.5 to 15.9
377-396 99 100                       1 None

Where the interval is 2", mean differences are given for 1"; where the interval is 10", com-

plete proportional parts for centesimal seconds are given.

The tables have been typed and reproduced from photographic plates. The Bremiker

division of the lines has been used throughout. No description of the source of the values

is given.

It seems hard to justify the use of six significant figures throughout if the accuracy of

measurement is limited to about 1". For small angles, the last one, two or even three figures

are meaningless. The same is true of angles near 100", where the number of decimals in-

creases steadily to 11. These extra decimals cannot be of any use in survey work, and are

only likely to be a source of confusion.

It is a blemish on the arrangement of the part of the table that is at interval 10" (156
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pages) that the centesimal minutes 0 to 50 are on a right-hand page and 50 to 100 on the

following left-hand page; they should, of course, have been printed at a single opening.

L. J. C.

363[D, E, L].—Miklos Imre Hetényi, Beams on Elastic Foundation. Theory
with Applications in the Fields of Civil and Mechanical Engineering.

(Univ. Michigan Studies. Scientific Series, v. 16). Ann Arbor, Univ. of

Michigan Press, 1946, p. 217-255. 17 X 25.2 cm. $4.50.

The tables include (p. 217-239) graphs and 4D tables A, = «""* (cos * + sin x),

Bz = e-' sin x, C, = <r* (cos x - sin x), D, = e~* cos x, for * = 0(.001).02(.01)4(.1)8,

i»(l»)4». There are also 5-7S tables with graphs (p. 241-243) of £i = |e*(sinh x + sin x)-1,

Fi — ie*(cosh x + cos x)~l, En = iex(sinh x — sin x)~\ Fn = i«*(cosh * — cos x)_1, for

* = 0(.05)3(.1)5.
There are also graphs and 4D tables (p. 245-255) of Z¡(x) = ber x, Z2(x) = — bei x,

¿Y(x), £,'(*), Z,(x), Z,(x), Z,'(x), Z«'(x) for x = 0(.01)6, where

Z, = i ber x - (2/ir)[£i - bei x(7 + In J*)],

Z< = - i bei x + (2/t)[ä. + ber x(y + In ix)], and

*(3) *(5)
Ri = (**)2 - 7¡r (*■)' + Tir (i*)10-

<A(2) (*(4) <í>(6) A
ä. = Tir (**)4 - Tir (**)8 + ?¡r (i*)" - • ■ ■ • *w - Ç i/*.

T = .577216- - -.

364[D, P].—Istituto Geográfico Militare, Florence, Tavole per Calco-

lare le Differenze di Livello nelle Lévate Topografiche e per Calcolare le

Distanze ridotte all'Orizzonte. (Collezione di Testi Tecnici). Florence, 1943,

viii, 1.95 p. 19.3 X 23.6 cm. Full cloth. The Preface is signed by Prof.
Giovanni Boaga, geodetic chief.

L is the distance AB of an object, a the angle of its elevation or depression with reference

to the horizontal plane, D = AC the projection of L on this plane, V — AE the projection

of AC = D, on L, and BC = h.

Table I, p. 3: D = L cos a to 4D, for a = lo(l°)30°, L - 1(1)9.
Table II, p. 14-41: V = D cos a = L cos2 a, to 4 or 5S, for a = 0(5')5°(2')ir(r)19°59'

and L = 1(1)9; also for L = 1, a - 20°(1')45°.
Table III, p. 43-135: h = D tan a, to 5D, for D = 1(1)9, a = 0(15")15°(30")20°(1')45°20'.
Table IV, p. 191: corrections due to sphericity and refraction, differences of level in meters

1000(100)25900, coefficient of refraction = .06733.
Table V, p.  195: tan2«, for a = O^O^O" 50', Tables for correction of sphericity and

refraction.

The previous edition of this work appeared in 1915 (15.7 X 22.4 cm., 53 p.) and con-

tained four tables. The first, and last two tables are practically equivalent to the first, fourth,

and fifth tables of the 1943 edition. T. II (1915) is of the same plan as T. Ill (1943), but
for the range [0(1')45°; 4DJ. This 1915 edition was an enlarged and corrected edition of a

previously revised and corrected edition, which appeared in 1896.

R. C. A.

365[D, S].—Louis Couffignal, Tables de Produits de Lignes Trigono-
métriques. Paris, Gauthier-Villars, 1943. iii p. + 24 thick paper leaves,

printed on only one side. 31.3 X 23.5 cm. Boards, 210 francs.

This volume was prepared under the direction of Dr. Couffignal, the director of

the laboratory of mechanical calculation in the Centre National de la Recherche Scientifique.
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The author's volume, Les Machines à Calculer. Leur Principes. Leur Evolutions. (Paris,

1933, ix, 86 p.) is well known. His doctoral dissertation at Paris was entitled Sur l'Analyse

Mécanique. Application aux Machines à Calculer et aux Calculs de la Mécanique Céleste

(Paris, 1938, 132, 3 p. 4to).
On the back of the title-page of the present volume is a brief preface in French, German

and English, and on the opposite page, again in three languages, are "Directions for use of

the Tables." We are told that "The establishment of crystal structure from X-ray diagrams

demands extensive calculations, where products of two or three cosines occur continually.

On the request of several French crystallographers the French National Office of Scientific

Research has undertaken to publish tables which might facilitate this kind of work. Besides,

such Tables may be useful in a great many cases of harmonic analysis."

The tables give the products P = f(X)-g(Y)-h(Z), where /, g, h axe either sine or

cosine functions. The arguments X, Y, Z are at interval one hundredth of a circumference,

that is, 4» = 3°.6. From the table one may read off at once the value of P for any X, Y, Z

in 4» units up to 100". For example, to evaluate P — sin 41-cos 65-cos 7 first turn to

cos Z = cos 7, p. 7 (in the upper right-hand corner of the page). Then on that page columns

sin X m sin 41, cos Y = cos 65, indicate that P = — .2850. The results are all to 4D.

The author states that the error in any P is less than 5' 10~6.

R. C. A.

366[F].—A. Gloden, "Compléments aux tables de factorisations de Cun-

ningham," Mathesis, v. 55, 1946, p. 254-256. 16.2 X 25 cm.

The tables referred to are those in which Cunningham gives1 (with many incomplete

entries) the factors of numbers of the form x4 + 1 for x < 1000. The results quoted in this

note serve to complete all but 51 entries in this table. Previous addenda by Kraitchik*

and Beeger3 are given and have been verified. The new results are by-products of tables

of the solutions of the congruence

x* = — 1 (mod p)

for p < 500000 by Gloden and Delfeld.* Those values of x for which (x* -f \)/d is a

prime between 1010 and 25-1010 are listed for d = 1, 2, 17, 34, 41, and 82. For some reason

the author has failed to list 565 for d = 1 and 640, 648 for d = 2. Six other factorizations

are given for x = 595, 598, 685, 714, 844, 880. The author has recently given a similar table'

to Cunningham's for 1000 < x ^ 3000. The present note closes with a table of the factors

of x» + 1 for x = 37, 41, 50, 52, 63, 82, 85, and 87.
D. H. L.

1 A. J. C. Cunningham, Binomial Factorisations, v. 1, London, 1923, p. 113-119.
' M. Kraitchik, Recherches sur la Théorie des Nombres, v. 2, Paris, 1929, p. 116-117.
* N. G. W. H. Beeger, Additions and Corrections to Binomial Factorisations by Cunning-

ham. Amsterdam, 1933, 1945.
«See MTAC, v. 1, p. 6; v. 2, p. 71-2, 210-211.
»See MTAC, v. 2, p. 211.

367[F].—Mikhail Borisovich Ostrogradskiï (1801-1861) Polnoe Sobranie
Sochineniï Akademika M. B. Ostrogradskogo [Complete collected works

of Academician M. B. Ostrogradskiï], v. 2: Lekísii Algebraicheskogo i

Transßendentnogo Analiza [Lectures on algebraic and transcendental

analysis], Moscow-Leningrad, Academy of Sciences, 1940, 464 p. 17 X 25

cm. Bound, 19 roubles.

This volume of Ostrogradskiï's works contains (p. 433-462) his tables of indices and

powers of a primitive root modulo p, for all primes under 200. This set of tables first appeared

in Akad. Nauk, S.S.S.R., Leningrad, Mémoires, . . . Sei. Math. Phys. et Nat. s. 6, v. 3 = Sei.

Math. Phys., s. 6, v. 1, "livraison 4," 1836, p. 359-385, and apparently was the first of its

kind to be published. These tables were reproduced and extended by Jacobi in 1839 to
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p < 1000 to form his famous Canon Arithmetics (Compare MTAC, v. 1, p. 440). Twelve

errata were discovered in Ostrogradskiï's tables by Jacobi after the latter had had them

set in type:

p Table Arg. For

71(439) I 16 15 22
71(439) I 26 22 IS
83(440) I 25 8 80

127(447) N 105 107 108
127(447) N 116 31 71
137(449) N 108 88 87
167(455) I 57 128 28
173(456) I 57 72 92
181(458) I 16 165 172
181(458) I 26 172 165
181(458) N 78 94 64
193(460) N 155 173 174

More than a century later the tables are now reproduced with the same old errata.

It should be noted that Ostrogradskiï's tables give also all the primitive roots of each

prime, information not presented in Jacobi's Canon.

D. H. L.

Editorial Note: Ostrogradskiï's portrait is on a plate opposite p. 64 of Les Mathéma-
tiques dans les Publications de l'Académie des Sciences 1728-1935. Répertoire Bibliographique,
Moscow, Academy of Sciences, 1936. In this v., p. 108, the date of publication of Ostro-
gradskiï's "Tables des racines . . ." is given incorrectly as 1838. The blue cover of "livrai-
son 4" in the Harvard University library copy is dated 1836.

368[F].—Wilhelm Patz, Tafel der regelmässigen Kettenbrüche für die Quadrat-

wurzeln aus den natürlichen Zahlen von 1-10000. Leipzig, Akademische

Verlagsgesellschaft, 1941. Lithoprinted by Edwards Bros., Ann Arbor,
Michigan, 1946, xvi, 282 p. 15 X 22.9 cm. $6.50. Published and dis-
tributed in the public interest by authority of the Alien Property Cus-

todian under license number A-412.

The regular continued fraction representing the square root of a positive non-square

integer has been the subject of much experimental work and theoretical investigation since

the time of Euler. This table will serve as a useful tool in the further work along these lines.

For each positive non-square D ^ 10002 are given the periodic partial quotients bi, b¡, ■ ■ -,

bp in the expansion

v^ = ôo + i   i        Ai
bi + b2+ ■■■ +bp + bl+ ■■■

Here bp = 2éo = 2[\Z?]. Since bk = ip_t(* > 0), it suffices to give bt for k Ç ip and br;

and this is done except when p ^ 6. In a majority of cases p is even (p = 2g) and b, is

printed with an asterisk. Thus for D — 178 and 209 the entries are

178|13(2, 1, 12*, 1,2,26),    209114(2, 5, 3, 2*, ■■■,29).

In case p is odd a diamond is printed before the expansion. Those values of D which are

primes are followed by a small p in the argument column.

The usual method of expanding \£> is explained on p. xi-xiii. Writing the nth complete

quotient in the form

X„   =   (Vö  +  Pn)/Qn   =   bn  + X^,

we have the four formulae of recurrence

=   (fro + Pn)Qn'¡, Pn+l  =  &nQ. - Pn, Qn+l   =   &„(P»+1   -  Pn)  + Q,

<

The last of these was used as an "automatic check" on the exactness of the calculation.

«2„ + 1   =   (D  - P2n+1)/Qn
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It is perhaps worth noting that the first two formulae may be replaced to advantage by the

following pair whenever the value of ¿>„ is not at once obvious

*o + Pn = bnQ. + r„,   Pn+l = ft» - r„,

where 0 ^ r ^ Q.
The usefulness (and also the number of pages) of this volume would have been more

than doubled had the author included the denominators Q„, as given in the tables of Degen,1

Cayley* and Whitford.* These numbers are important in the application of continued

fractions, especially to the diophantine equation of Lagrange

x> - Dy* = N

Besides this application the importance of this table lies in the wealth of statistical

information it gives about the expansion of square roots of integers. The table throws some

light on the unsolved questions of whether the period p is even or odd, whether, for a given

D, the central partial quotient has the value ba or bo — 1 or not, whether p < c\D; and

so on. Inspection of the latter part of the table reveals quite a large number of very long

expansions. There are 31 values of D for which the period exceeds 2\D. These range from

1726 to 9949 with periods of 88 and 217 respectively. The ratio p/yD reaches a maximum

of 2.2245 at D = 7606. Thus there is still room for the conjecture that, for all D, p < \SD.

These long expansions appear to have more than their share of unit values among their 6's.

In fact more than 43.62 percent of their partial quotients are equal to unity. The average

for all real numbers is only log2 (4/3) = .41503.

There are three errata listed on p. xiv: D = 2872, for 1, 2, 2, 4, read 1, 2, 4; D = 4170,

for 2, 1, 3, 3, read 2, 1, 4, 3; D = 4966, for 1, 4, 1, 2, read 1, 4, 2, 2. The first still occurs in
the 1946 edition while the last two have been corrected. Nevertheless the above list is given.

This confusing bit of editing led the reviewer to recalculate the expansions for D = 4170

and 4966. Beeger has pointed out (MTA C, v. 2, p. 88) that in the 1941 edition the diamond

sign is printed one line too low at D = 6938, 6949, 6953, and 9698. The first* three of these

misprints occur also in the present edition but the diamond is two lines too low at 9697 and

is missing at 9698. The author has compared his table with those of Degen (D ^ 1000),

Cayley (1001 ^ D ^ 1500), Whitford (1501 ^ D ^ 2012) and Thielmann4 (about 140

isolated D's under 10*). No errata in these tables are quoted although the first and third

are known to contain 2 and 4 erroneous continued fraction expansions respectively.» The

table of Roberts8 for all primes D = 4« + 1 < 10* was not available to the author. A

comparison of these two tables would give a very good idea of the reliability of the one

under review.

D. H. L.

1 C. F. Degen, Canon Pellianus . . ., Copenhagen, 1817.
1 A. Cayley, "Report of a committee appointed for the purpose of carrying on the

tables connected with the Pellian equation from the point where the work was left by Degen
in 1817," BAAS, Report, 1893, p. 73-120; also Collected Mathematical Papers, v. 13, 1897,
p. 430-467. [These tables were computed by C. E. Bickmore.]

3 E. E. Whitford, The Pell Equation, New York, 1912, p. 164-190.
1 M. von Thielmann, "Zur Pellschen Gleichung," Math. Annalen, v. 95, 1926, p.

635-640.
» D. H. Lehmer, Guide to Tables in the Theory of Numbers, 1941, p. 138, 171.
• C. A. Roberts, "Table of the square roots of the prime numbers of the form 4«i + 1

less than 10000 expanded as periodic continued fractions," Math. Magazine, v. 2, p. 105-120,
1892.

369[F].—Heinrich Tietze, "Einige Tabellen zur Verteilung der Primzahlen

auf Untergruppen der Gruppe der teilerfremden Restklassen nach

gegebenem Modul," Akad. d. Wiss., Munich, Abk., Math. Nat. Abt.,
n.s., no. 55, 1944. 31 p. 22.3 X 28.5 cm.

This paper contains 26 short tables giving information about the distribution of primes
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in certain sets of arithmetical progressions the last term of which is denoted by L. The actual

forms considered are km + r,(j = 0, 1, • • •) for the 26 following values of m and r¡:

Table

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

10
10
8
8
8
8
9
9

30
30
30
30
30
26
26
26
26

262
262
262
262
262
262
262
262
262

*(m)

4
4
4
4
4
4
6
6
8
8
8
8
8

12
12
12
12

130
130
130
130
130
130
130
130
130

ri

1.9
1
1
1,3
1.5
1.7
1.4.7
1.8
1,29
1,11
1, 17, 19, 23
1, 7, 13, 19
1, 11, 19, 29
1, 3, 9, 17, 23, 25
1,3,9
1,25
1
Quadratic residues
5th power residues
10th power residues
13th power residues
26th power residues
65 th power residues
1
259
17

571
571
449
457
449
449
487
487

11
1913
1879
1901
1091
1069
1091
1093
3931
3929
3911
3929
3467
3929

298943
298153
297911

Under multiplication modulo m, the set of r's in each case forms a group r, in fact a subgroup

of the group H of the <t>(m) numbers ^ m and prime to m.

Let n#(x) and Ilr(x) denote the number of primes $ x belonging respectively to H and

r modulo m. If there are A elements of V and if <p(m) = hi, then, according to the prime

number theorem (generalized), n«(x) and iTIr(x) are asymptotically equal and approach

<t>(m)x/m In x. The tables give values of these step functions together with the difference

A(x) «= Ha(x) - i'nr(x)

for x ^ L.
Since A(x) is a step function it suffices to tabulate it only at the values of x where it

changes value, that is at primes belonging to T (mod m). These primes are denoted by N

and form the arguments of the tables. This makes inr(iV) merely a list of consecutive

multiples of ¿, and this column might well have been omitted. As x varies from one value

of N to the next, A(x) increases because Hff(x) increases. The value of A(x) just before the

next value of N is denoted by A*(iV) and is tabulated also.

The modulus 262 is chosen because 131 is the least prime having 3, 5, 7, 11, 13 as

quadratic residues, 17 and 259 are the least and greatest primitive roots of 131. The last

three large tables, especially table 24 might some day prove useful as a list of primes of

these forms. Cunningham's observation that the form km + 1 contains fewer primes ^ x

than km -f- /, / + 1, (.1, m coprime) does not seem to hold for m = 262. In fact A(iV) in

table 24 changes sign very often.

D. H. L.

370[F].—I. M. Vinogradov, Osnovy Teorii Chisel [Fundamentals of the

Theory of Numbers], Moscow-Leningrad, (a) third ed., 10 000 copies,

1940, 111 p. + an errata sheet. 12.7 X 18.7 cm. Bound, 3 roubles,
(b) Fourth ed., 3 000 copies, 1944, 142 p. + an errata sheet. 13.8 X 20

cm. Paper bound, 4 roubles.
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(a) This interesting little volume contains two kinds of tables:

(1) Tables of indices and powers of a primitive root modulo p for p < 100 (p. 104-109).

These are based on least primitive roots and so are identical with tables of Wertheim,1

and Uspensky & Heaslet.* A comparison with the latter table reveals no discrepancy.

(2) Table of least primitive roots of primes p < 3000 (p. 110-111).

Three errata may be noted: p = 1013, for 2, read 3;p = 2593, for 10, read 7;p- 2999,

for 7, read 17.
(b) In this edition the first group of tables (p. 135-140) is the same as in the third

edition but the table of least primitive roots of primes < 3000, in the third edition, has been

corrected and enlarged to primes < 4000 (p. 141-142).

D. H. L.

1 G. Wertheim, Aufgangsgründe der Zahlenlehre. Brunswick, 1902, p. 412-417.
* J. V. Uspensky & M. A. Heaslet, Elementary Number Theory. New York and London,

1939, p. 477-480.

37l[G, L].—A. Colombani, "La théorie des filtres électriques et les poly-
nômes de Tchebichef," Jn. de Physique et de Radium, s. 8, v. 7, Aug. 1946,
p. 231-243. 21.3 X 26.6 cm. Compare MTAC, v. 1, p. 125, 149f, 385,
RMT381.383.

There are two tables for so-called Chebyshev polynomials, p. 236-237. T. I gives 5»(x)

for x = - 2(.1)0, n = [2(1)10; »D]. Also zeros of 5„ to 5D. T. II gives values of XÀx)

= 5„(x) - S„_,(x), for xi/xt = x - 2-4(.1)0, x = - 2(.1)2, n - [1(1)10; »D]. Also
zeros of ATio(x) to 5D. Figs. 2-4, p. 234-235, are graphs of Xn(x) for n - 1(1)10.

S„(x) = sin (n + l)0/sin 0,    x = 2 cos 6.

372[I].—H. E. Salzer, "Coefficients for facilitating the use of the Gaussian

quadrature formula," Jn. Math. Physics, v. 25, 1946, p. 244-246.
17.5 X 25.5 cm.

In the Gaussian quadrature formula

P f(x)dx = ¿ a¡f(xi) + Rn
¿-i

the sum extends over the roots x< of the Legendre polynomial P„(x). As these roots are not

equally spaced, it is not possible to test the smoothness of a set of computed ordinates /(x¿)

by straight-forward differencing, as one would do in the case of a Cotes type formula.

To examine the (n — l)st difference of this set of ordinates one must resort to divided

differences. Much of the cumbersome calculation attending the general divided difference

process can, in this case, be avoided. In fact this difference can be written

Ê 6>>/(x.)

where the coefficients are simply

CV»> = 2-»(s„")/P„'(x,).

This paper contains a small table of these coefficients for n = 3(1)10. The accuracy is 8D

for n = 3, 4, 5; 7D for n = 6, 7, 8; and 6D for n = 9, 10. The author fails to indicate that

in his notation the roots x, are so ordered that

Xl   < Xi  <   ■ ■ ■   < Xn,

a fact which the user of the table will need to know.

D. H. L.
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373[I, L].—H. A. Rademacher & I. J. Schoenberg, "An iteration method
for calculation with Laurent series," Quart. Appl. Math., v. 4, July 1946,
p. 142-159. 17.5 X 25.4 cm.

In the authors' words, "the purpose of this paper is to describe a method whereby ra-

tional or algebraic operations with Laurent series may be performed with high accuracy at

the expense of a reasonable amount of labor."

The main problem considered" is that of solving numerically

(1) /(if, z) m a0(ï)w" -f 0,(3)»»-» ■+-•■■ + a»(2) = 0

for the coefficients of the Laurent series of a particular branch of w(z), where the at(z) are

regular and uniform functions of z in the ring

R:    r, <|a|<r,

and where neither o0(z) nor the discriminant D(z) of (1) is zero in R.

The procedure suggested by the authors is first to find an initial approximation and

then to use an iteration scheme based on a modification of Newton's algorithm. In this

modification only one division is needed and that is a preliminary one. A method is given

of obtaining by trigonometric interpolation a Laurent polynomial,

Fn(z)  =    ¿    £„,,*,

»'— »

as a first approximation. It is proven that F„(z) approaches the solution as n -*■ ». One of

the points of this paper is that it is preferable to start with a small value of n and then to

iterate rather than to use F„(z) for a large value of n.

The iteration scheme is as follows: Since the discriminant D(z) is not zero there are

polynomials <t>(vi) and <l>(w), with coefficients which are polynomials in the Oi(z) divided

by D(z), such that,

♦(w)/(w, z) + *(w) ^-^ = 1.
dw

The modified Newton's algorithm can now be expressed by the recurrence formula

Wr+l  =  Wr — f(wr, Z)\l/{wr).

This has the usual quadratic convergence of the Newton algorithm. The authors state that

this method has been used previously by Schwertfeger for the numerical solution of ordinary

algebraic and transcendental equations.

The authors show that in the special case of solving

o(z)u-(i) -1=0

the recurrence formula reduces to

ai,+i = i»r(2 — aw,),

which is the formula described by Hotelling for inverting matrices. Therefore, in reciproca-

tion of a Laurent series one can use an inequality of Hotelling and Lonseth to obtain a

limit for the error due to stopping after any number of steps.

As an illustration the authors compute the coefficients wn of the Laurent expansion of

the reciprocal of — /o(\13z) between the first two positive roots of that function. The

entire computation to 9D is exhibited in tabular form for wn with — 29 ^ n ^ 32. The

remaining coefficients are numerically smaller than 10~*. The paper also contains a descrip-

tion of how the methods of calculating with Laurent series apply to calculations with

absolutely convergent Fourier series.

In conclusion one can say that this article presents in a very convenient form a solution

to the problem considered, especially for those who will have to do actual computations

of this sort.
Abraham Hillman

NBSMTP
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374[K].—La Mont C. Cole, "A simple test of the hypothesis that al-
ternative events are equally probable," Ecology, v. 26, 1945, p. 204.

16.5 X 25.4 cm.

À        »!
Table III, values of P = 2>-"5Z ̂T,-ST¡.  for   * = 0(1)12,   n m [2(1)35; 5D].

0 E\{n — E)\

"Table gives proportion in both tails of (J + \)H. For larger values of n use t = (» — 2£)n~'.

In general, a value is statistically significant (P < 0.05) if E ^ in — »*."

Extracts from text

37S[K].—Frederick E. Croxton & Dudley J. Cowden, "Tables to facili-
tate computation of sampling limits of s, and fiducial limits of sigma,"

Industrial Quality Control, v. 3, July 1946, p. 18-21. 21.6 X 27.9 cm.

For samples of size N drawn from a normal distribution with known variance a*, upper

and lower percentage points of the distribution of s/a are given in Table 1 entitled: "Values

of si a at selected probability points for various sample sizes." The sample standard deviation

is s = [£ (* — x)'/iV]*. The probability points of the distribution of s/a are given in pairs

for probabilities a and 1 - a, with a = .001, .005, .01, .025, .05, .10, for N = [2(1)30; 3D].
An approximation is given for N > 30. A table similar to the present one for a = .001, .005

and for N = 2(1)15 is given in Amer. Standards Assoc, Control Chart Method of Controlling

Quality During Production, no. ASA Z 1.3—1942, p. 40.
Table 2, entitled "Values of ¡r/s for use in computation of selected fiducial limits of a

for various sample sizes," may be used to obtain confidence or fiducial limits for a. Con-

fidence levels available are .998, .99, .98, .95, .90, .80 for N = 2(1)30. The entries in this

table are principally reciprocals of the entries of Table 1. A similar table for confidence

levels .90, and .98, N = 5(1)30, appears in E. S. Pearson, The Application of Statistical

Methods to Industrial Standardisation and Quality Control, London, British Standards

Institution, 1935, p. 69.
The tabulated values of the tables under review were derived principally from

Catherine M. Thompson, "Table of percentage points of the x* distribution," Biometrika,

v. 32, p. 187f, 1941. (See MTAC, v. 1, p. 78). But the .999 points of Table 1 were derived
from R. A. Fisher & F. Yates, Statistical Tables for Biological, Agricultural, and Medical

Research. London, 1938, Table IV, p. 27, while the .001 points of Table 1 were derived from

tables of F shown in F. E. Croxton & D. J. Cowden, Applied General Statistics. New York,

1939, p. 878-879.

Frederick Mosteller
Harvard University

Editorial Note: It may be remarked that it was exactly on the pages quoted as
sources, Fisher & Yates, 1938, p. 27, and Croxton & Cowden, 1939, p. 878, that we have
listed errors in the tables in question, namely: MTAC, v. 1, p. 324, and 86.

376[K].—V. L. Goncharov, Teorità Veroiàtnoslel [Theory of Probabilities].

Moscow and Leningrad, 1939, 427 p. + errata slip. 14.4 X 21.7 cm.
Bound, 11 roubles. An edition of 5000 copies.

This government ordnance industry publication has three small tables on its last seven

pages. In the notation of the FMR, Index, these are

(a) H(x) = 2*--» f" e->'dt, for x = [0(.05)2.2; 4D], [2.2(.05)2.75, 3; 6D], [3.5, 4;9DJ

(b) ,ff(px), where p = .4769362762- •• is the root of H(x) = J.forx = [0(.01)3.4(.1)5.4; 5D].
(c) xH(px) + p-'tt-««-^' for x = [0(.05)5.2;4D].

All three tables give first differences.
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Strange to say, the very well known function H(x) is not tabulated correctly in (a).

There are two errata: t = 2.4, for .999312, read .999311; t - 2.7, for .999868, read .999866.
A last-figure error occurs in (b); in the final entry t = 5.40, for 99972, read 99973.

The function tabulated in (c) is essentially the second iterated integral:

1     .    2
+ -7=f f"r"dedi.

■yvJo Ja

This table appears to have several last-figure errors. For example, t = 1.05, for 1466,

read 1468; t = 1.10, for 1493, read 1494.
For a discussion of the tables the reader may consult p. 150 and 217.

D. H. L.

377[K].—Mrs. Catherine M. (Thompson) Grylls & Mrs. Maxine
Merrington, "Tables for testing the homogeneity of a set of estimated

variances," Biometrika, v. 33, June 1946, p. 302-304. A preface by H. O.
Hartley & E. S. Pearson occupies p. 296-301. 19.3 X 27.3 cm.

These tables are designed to provide 1 per cent, and 5 per cent, points for testing the

hypothesis that the variances of several normal populations, as estimated from two or more

independent observations on each, are equal; or hypotheses equivalent thereto. The basis

for computation was an approximation of Hartley1 to the distribution of a statistic sug-

gested by Bartlett' which differs in weighting factors from the likelihood ratio statistic

proposed by Neyman & Pearson,' and which has been found more powerful in certain

cases by Bishop & Nair.4

Hartley's approximation depends on three parameters: the number of populations k,

and two functions of the degrees of freedom vt of the estimates of the population variances,

d =L(-) -T..    cs=L— -TT..    where    N=2Z">
,  \vi/       N ,   vt'      N' ,

The percentage points vary but little with ct. The tables are double entry, giving for each

pair k and Ci, two values which are approximately the extremes with respect to variation

in c3. An auxiliary table aids interpolation with c> in the occasional case when these extremes

cover the computed statistic.

The percentage points are given to 2D(3 or 4S) for k = 3(1)15 and (the entire range of)

C\ = 0(.5)5(1)10(2)14. A historical note, several illustrative examples and a discussion of

the accuracy of the approximation, are provided in the preface. It is found that the approxi-

mation is "very good" if the degrees of freedom all exceed 2, and is "adequate" if some are

as small as 2.

J. L. Hodges, Jr.
Statistical Laboratory,

Univ. of California, Berkeley.

1 H. O. Hartley, "Testing the homogeneity of a set of variances," Biometrika, v. 31,
1940, p. 249-255.

2 M. S. Bartlett, "Properties of sufficiency and statistical tests," R. Soc. London,
Proc, v. 160A, 1937, p. 268-282.

3 J. Neyman & E. S. Pearson, "On the problem of k samples," Akad. umiejetnoáci,
Bull. Intern., 1931A, p. 460-481.

4 D. T. Bishop & U. S. Nair, "A note on certain methods of testing for the homogeneity
of a set of estimated variance," R. Statist. Soc., Jn., v. 102, Suppl. v. 6, 1939, p. 89-99.

378[K, V].—Cecil Hastings & Margaret Piedem, Miscellaneous Prob-
ability Tables, calculated and checked under the direction of Dr. H. H.

Germond, 1942-1944. Applied Mathematics Panel, National Defense
Research Committee, Note no. 14, New York, July 1944. ii, 65 p.
Offset print. 21.3 X 27.8 cm. These tables are not available for public

distribution.
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The main table (p. 6-37 and introduction p. 1-5) is devoted to the two-dimensional

normal distribution function (or error function)

V(h, q) - (2*)-'/* f°"k e-Wdydx, W = x« + y*.

The double entry table to 5D has h and q/h as independent variables, the former ap-

pearing in rows, the latter in columns; h = 0(.01)4, q/h = .1(.1)1. Differences are tabulated

in the main rows and columns between the corresponding entries. The differences within

columns have usually only one digit and never exceed 85 units; the differences in the rows

keep to three digits. The need for the tables arose in probability problems associated with

bombing and fragmentation damage. NBSMTP supplied the key values of V(h, q) from

which the Table was subtabulated. The computation was carried on for some time before

the appearance of C. Nicholson, "The probability integral for two variables," Biometrika,

v. 33, part 1, April, 1943, p. 59-72, where a table of V(h, q), to 6D, is given for * « .1(.1)3,

S = .1(.1)3, «.
Pages 39-45 cover tables for H(x) — xH'(x), where H(x) is defined by

H(x) = 2(r)-*ft' e-'*dt.

The range is [0(.001)3(.01)4.3; 7DJ; for x > 4.3 the entries would equal unity throughout.

(The entries in the first column on p. 45 are misprinted: the last zero should be deleted

everywhere, and the last line on p. 44 should be deleted. This table was computed by using

NBSMTP, Tables of Probability Functions, v. 1, 1941.) It is stated that the rounding errors

will occasionally amount to one unit in the last digit. There follow, p. 46—49, tables of the

inverse of the function H(x) — xH'ix) covering the entire significant range, namely

[0(.001)1;5D].
The next table, p. 51-62, gives values of the function y = 1 — (1 + x)e~x. These tables

will be useful in particular in connection with the Poisson distribution. The range is

[0(.001)5(.01)10(.1)15; 5D]. Again, y is practically constant for x > 15.

Two small tables conclude the collection. On p. 63 we find values of the product xy

where y is defined by the equation

xy = 1 — «"».

The range is x = [0(.01)1; 5DJ, A'. Finally, on p. 65 is a table of

*(x) =xe'i f'e^dt

for the range [2(.1)7; 5D], As.

W. Feller

Cornell University

Editorial Note: In our notes on Dawson's or Poisson's integral we have listed an
earlier table of <p(x), MTAC, v. 1, p. 323, N. Kapzov & S. Gwosdower, Z.f. Physik, v. 45,
1927, p. 133. This table is for the range x = [.1, .5, .8(.2)1.2(.05)2.2; 5D]; A, 1.5-2.2. The
use for such a table there, arose in discussion of oscillations in electron tubes.

379[L].—D.  Chalonge & V.  Kourganoff, "Recherches sur le spectre

continu  du  soleil,"  Annales d'Astrophysique,  v.  9,   1946,  p.  69-96.
21.5 X 27.4 cm.

Appendix I contains two tables of "la fonction T incomplète d'argument négatif":

fx(a) = fo' F-Wdt

T. A, p. 94. x = [0(.01).l; 4D]; a = [1(.1)1],
T. B, p. 95-96. a = [.01(.01)l;4D];x = [0(.1)1.1].
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The authors state that the tables constitute "un extrait, pour le domaine qui nous

intéresse ici, d'une table plus étendue qui paraîtra prochainement." No details of the

calculation are given.

L. E. Cunningham
Astronomy Department

University of California

Berkeley

380[L].—Harvard University, Computation Laboratory, Annals, v. 3:
Tables of the Bessel Functions of the First Kind of Orders Zero and One;

v. 4 : Tables of the Bessel Functions of the First Kind of Orders Two and
Three, by the Staff of the Laboratory, Professor H. H. Aiken, Technical

Director, Cambridge, Mass., Harvard Univ. Press, 1947. ¡i, xxvii, 652 p.

and viii, 652 p. 19.5 X 26.7 cm. $10.00 + $10.00. Compare MTAC, v. 2,
p. 176f, 185f. The offset printing of these volumes is of outstanding

excellence.

P. iii, "Staff of the Computation Laboratory" [11 members and 13 assistants listed],

P. vi, "Preface" by Professor Aiken. Quotations: In Nov. 1944 a conference at the Naval

Research Laboratory was called to discuss the tabulation of Bessel functions of the first kind

and of high order, which at that time were needed in connection with various research

problems of interest to the Navy. As a result the computation project of the Bureau of Ships

was directed to tabulate the required functions. During discussion it became clear that if

Jioo(x) was to be accurate to ten decimal places, an adding, multiplying, and storage capacity

of more than forty digits would be required of the Automatic Sequence Controlled Calcu-

lator. Since the multiplying unit of the calculator already supplied forty-six digits and the

algebraic sign, it was only necessary to link two normal storage registers, each comprising

twenty-three digits and the algebraic sign, to form a single adding storage register covering

forty-six digits and the algebraic sign.

On the first of January 1946, the Computation Project was transferred to the Bureau

of Ordnance.

P. ix-xxii, "Introduction" by Richard M. Bloch

Part I. The Bessel Functions, p. ix-xi,

Part II. The Computation of the Tables, p. xii-xviii,

Part III. Interpolation in the Tables, p. xix-xxii.

Part I. Because of the important applications of Bessel Functions to many physical phe-

nomena, they have been the subject of intensive investigation for many years. Recent

advances in the theory of frequency modulations, resonance in cavities, waves in various

media, vibration theory of structures, and other problems of physics and engineering have

greatly increased the need for extensive tables of /„(x) and K„(x) covering a large range

both of the order and of the argument.

The Staff of the Computation Laboratory is at present engaged in the tabulation of

J»(x), 0 ^ x < 100, n = 0(1)100. The present volumes contain tables for » =• 0(1)3,

x = [0(.001)25(.01)99.99; 18D].

The Bessel functions satisfy the two relations

A_,(X)  - Jn+l(x)   =   2J.'(X)

(1) Jn-Áx) + /„+.(*)  =  - Jn(x).
X

For machine computation, the successive application of the recurrence formula (1) provides

the most feasible method of obtaining the high order functions. Since ten decimals place

accuracy is to be maintained in the tables of /„(x) for 4 $ « $ 100, it was necessary to

investigate the cumulative loss of accuracy which arises in the repetitive use of (1) as the
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computation proceeds. If /m_i(x) and Jm(x) (m = 3 for x < 2, m = 2 for x ^ 2) are the

two basic functions upon which the recurrence is constructed, the maximum number of

decimal places lost is eleven. Consequently the low order functions /o(x), J¡(x) and Ji(x)

were computed correct to twenty-three places of decimals. Since the figures were available,

the tables of 7„(x) (n = 0, 1, 2, 3) have been printed to 18D, despite the fact that interpola-

tion within these tables to full accuracy would be extremely difficult with the present

manual aids to computation.

The Automatic Sequence Controlled Calculator is so arranged that after all final results

are automatically checked, they are printed by the typewriters controlled by the machine

itself. Certain tables of Bessel functions to eighteen or more D were read against the values

computed at the Computation Laboratory. These comparisons were made with the values

of the functions listed in the following three tables: Meissel, as in Gray, Mathews, &

MacRobert, A Treatise on Bessel Functions, 1931, p. 286-299, 18D, 1 ^ x $ 24, Ax = 1,

n = 0(1)3; Hayashi, Tafeln der Besselschen, Theta-, Kugel-, und anderer Funktionen, 1930,

p. 52-59, n = 0(1)3, .01 ^ x ^ 100, selected Ax, 22-103D; Aldis, R. Soc. London, Proc,
v. 66, 1900, p. 40-43, n = 0, 1; 0 ^ x ^ 6, Ax = .1, 21D. No discrepancies were observed.

Part II. Values of 7»(x) given in other tables were not used. All numerical constants in-

cluding the coefficients of the ascending power series, the asymptotic series and those re-

quired for interpolation, were evaluated at the Computation Laboratory, regardless of the

availability of such material from external sources.

The ascending power series

œ / x \2t"h»

-/„(x) =£*-*,,„(-)    ,

where a,,„ = (— l)r/r!(n + r)\, and k is a normalizing factor, was used to evaluate /„(x)

for n = 0(1)3 over the range 0 ^ x <2 with increment Ax = .001, and for n = 0(1)2 over

the range 2 ^ x-^ 25 with increment .01. The values of 10m-ar,„ computed to 50D, are

given for r = 1(1)60, 0 $ m $ 168, n = 0(1)2.
For the range 0 ^ x < 2, * = 1; 2 $ x < 10, k = 5; 10 ̂  x < 20, k = 10; 20 s* x ^ 25,

k = 20. For n = 3 we have 110"1-<ir.il, r = 0(1)15, 1 $ m ^ 28, p. xxiii-xxxi.

There are similar tables (p. xxxii-xxxvii) for the various asymptotic expansions.

Extracts from introductory text

381[L].—C. W. Jones, J. C. P. Miller, J. F. C. Conn, & R. C. Pankhurst,
"Tables of Chebyshev polynomials," R. Soc. Edinb., Proc, v. 62A, no. 21,
1946, p. 187-203. 17.5 X 25.5 cm.

The main object of the article under review is to present a table of the Chebyshev

polynomials C(x) = 2 cos (n arc cos Jx) for n = 1(1)12 and x = 0(.02)2. The tabulated

values are either exact or given to 10D. In addition to the table of C„(x), the article contains

also short tables of the functions (4 — x2)*, (2 -+- x)*, (2 — x)' and arc cos \x required in

the applications of Chebyshev polynomials discussed in Dr. Miller's article, "Two numerical

applications of Chebyshev polynomials" (RMT 383).
The tabular material is preceded by an excellent introduction giving the definition of

the Chebyshev polynomials C„(x) and Sn(x) and of other related functions, the differential

equations and recurrence relations satisfied by these functions, the explicit power series

expressions of these functions, the expressions of the twelve powers of x in terms of Cheby-

shev polynomials C„(x), the orthogonality relations and the generating functions for each of

the functions under consideration.

The reviewer agrees with the authors' remarks that the tables will be of particular

importance to computers. One application particularly worth mentioning is the process of

interpolation by means of Chebyshev polynomials (RMT 383). The efficacy of this process

of interpolation is illustrated by the following observation: In a certain region of the Mathieu

functions ms. in preparation by the NBSMTP, interpolation to the full accuracy of the

table would require the use of a formula involving differences up to the ninth order; the
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corresponding interpolation formula in terms of C„(x) requires only the first five Chebyshev

polynomials.

Forty percent of the entries of the table under review were proofread against the corre-

sponding entries in the more extensive table of Chebyshev polynomials prepared by the

NBSMTP (see MTAC, v. 1, p. 125); no discrepancies were discovered.

Arnold N. Lowan

382[L].—N. W. McLachlan (a) "Computation of the solution of Mathieu's
equation," Phil. Mag., s. 7, v. 36, June 1945 (publ. Jan. 1946), p. 403-414.
17 X 25.5 cm.  (b)  "Mathieu functions and their classification," Jn.
Math. Phys., v. 25, Oct., 1946, p. 209-240. 17.3 X 25.4 cm.

(a) This paper deals with the computation of the solutions of

d'y
(1) -£ + (a - 2q cos 2z)y - 0

az1

where a, q are real parameters. For certain characteristic values, the solutions of (1) are

periodic, of period r or 2*-. Those characteristic values which give rise to even solutions of

period *■ and 2ir are denoted by a2m and a2m+l, respectively. The characteristic values giving

rise to odd solutions of period 2t and t are denoted by b2m+l and ¿>2m+2, respectively. The

curves a = am(q) and a = bm(q) separate the (a — q) plane1 into regions in which the solu-

tions are "stable" or "unstable." When the parametric point (a, q) lies between a„ and

bm+u the solution is "stable"; that is, two independent solutions of (1) may be written in

the form

CO

(2) y-  E   cr™* (2r + p + ß)z.

In (2), p = 0 if the subscript m in am is even, and p = 1 if m is odd. According to currently

accepted theory, there exists a unique positive value of ß less than unity corresponding to

every point (a, q) in this region, such that the solution (2) remains finite as z approaches

infinity through real values.

The value of a which, for a fixed q, determines ß, will be denoted by am+ß. Between

<J„,(g) and bm+i(q) there lies a family of ¡so-0 curves, i.e., ß = constant. When ß turns out to

be a proper fraction p/s (in its lowest terms), the solution will be periodic, of period 2rs.

When ß is irrational, the solutions of (2) will be non-periodic.

If the parametric point (a, q) lies between bm and am, the solutions are "unstable";

that is, no solution of the form (2) exists. By Floquet's theorem, there does exist a solution

of the form

(3) y = e*" ¿  ere'*-1-"'",
i— m

where p = 0 if m is even in bm, am, and p = 1 if m is odd. When (a, g) lies in an unstable

region, ß is real. It may be readily seen that when p is a purely imaginary number, (3) yields

the solutions (2).

The most important contribution of the paper is to show how ß may be determined,

in the stable region, from a knowledge of the characteristic values am and bm. Let a point

(a, q) of a stable region be given and let it be desired to determine ß. The author improves

upon Ince's method by obtaining some good first approximation to ß. By inverting the known

series for "a" in terms of (m + ß) and q, the author obtains the following approximation1 to/3:

(4) ß = I a-• • •       — m.
L 2(<i - l)2 - g2      32(a - l)»(o - 4)        J

In (b) the above expansion is extended to include, in the radical, the term — (9a2 + 58a
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+ 29)g,/64(o — l)'(a — 4)(a — 9). This reviewer believes that, if the first three terms are

left in their present form, the term involving g" should be2 (— 37a» + 319a2 — 587a + 17)gV

64(a — l)'(a — 4)2(a — 9). However, the series (4) is useful only when the expression under

the radical converges rapidly enough with the given terms; and whenever the contribution

from the corrected term involving g6 is small, the uncorrected term will not be much larger

numerically.

When (4) cannot be used (a denominator may vanish or q/(a — 1) may be too large),

then other approximations may be used. Let a„ and ¿>„+i be the characteristic values for

the given g, between which a lies. Let X •» (a — a„)/(im+i — a«). Then X should be an

approximation to ß. However, usually X is too crude; a better approximation may be ob-

tained if it is assumed that, at g = 0, the iso-0 curve intersects the region between am and

èm+i in approximately the same ratio, X. Since, at g = 0, a„. = m1, and fc„+I ■» (m + l)1,

it follows from (4) and the above assumption as to X that

(5) »-{[-m]'-'}-
The author gives still another empirical formula for ß. Let

Vm = (a* - am«)/(6„+it — a«»).

Replacing X by </>m in (5), one obtains

(6) '--{['♦-mr-'r-
In an appendix, the author gives a table showing the accuracy of the several approximations

in a few of the instances in which they were tried. The schedule given below summarizes

the author's results; all figures except those in the last column were recalculated by this

reviewer; in cases of discrepancy, the recalculated figures are given. The results obtained

were close to those of the author, except on line 2 of the schedule, where the author obtained,

by formula (4), an amount .57—apparently by neglecting the third term under the radical.

Formulae Used
More Accurate

ma « X (4) (5) (6) Value of ß

13 2 .48 — .56 .59 .579
2 8 4 .48 .52 .53 .55 .59
2 6 2 .21 ».34 .25 .27 .34
5 36 16 .48 '.62 .50 .51 '.583
1 2 .0125 .33 .4142 .41 .49 .4142
0 -1.45 2 .52 — .72 .72 .52

The last two examples were supplied by the reviewer. Except in the last example,

formulae (4), (5), and (6) are better than X, and (4) gives a good approximation in many

cases. The author recommends the use of this formula wherever possible. It is to be noted

that the author's ingenious method of improving on X in (5) and (6) is fruitful in its results,

especially when (4) cannot be used.

Once an approximation to ß has been obtained, the method of improving it by iteration

or interpolation, in the process of computing the coefficients c„ is fairly easy. Thus in the

recurrence relation

(7) [a - (2r + p + (S)»]^ - g(cr+, + cr_.) = 0,

one may neglect ct(r+i> for r sufficiently large, and compute in turn c,_i, • • -, Co in terms of

cr (hence also cr, ■ ■ ■, Ci in terms of Co); and again c_r+i, • • -, Co in terms of c_r (hence also

C-r+i, etc. in terms of c0). Then setting r = 0 in (7), the relation between c_i, C\, and c0

will be satisfied only if ß is correct, and the divergence of the right-hand side of (7) from zero

shows how to correct ß and the coefficients c One may of course compute the coefficients in

terms of any cm rather than in terms of ct>. Several variations of the computing technique

are given, with methods of checking the computations.

The method of approximation may also be used for the unstable regions, once íso-m



RECENT  MATHEMATICAL  TABLES 265

curves have been plotted. It is recommended that the coefficients c, be normalized so that

Zcr» - 1.
(b) Here are given a great variety of representations for the solutions of Mathieu's

equation and of Mathieu's "modified" equation. Quoting from the author: "The number of

representations in the guise of series, integral relations, etc., exceeds 300. Of these, about

200 have not been published hitherto. ... No attempt is made to show the derivation of

the new formulae, as this paper would then be much too long."

The first part of the paper deals with solutions of the first and second kind for Mathieu

functions of integral order, and includes the very useful Bessel-function-products solutions,

previously given in a paper by W. G. Bickley & N. W. McLachlan, MTAC, v. 2, Jan.

1946, p. 1-11. It may be worth pointing out that Bessel-function-products solutions of

Mathieu's differential equation were given by Bruno Sieger4; and although Sieger's work

is again mentioned by Strutt,' the importance of such solutions seems to have been little

understood until it was emphasized by Bickley & McLachlan in their paper. (This reviewer

learned of Sieger's work from Professor Bickley.) All forms given in the January paper are

included in this larger one by McLachlan, now under review. In addition, a great many

variations of the Bessel-function-products are given, which may prove useful from a

computational standpoint.

Functions of the third kind (analogous to the well-known Hankel functions) are defined

in section 11. Except for the normalization factor, these solutions are the same as the ones

previously defined by L. J. Chu and J. A. Stratton (/». Math. Phys., Aug., 1941), see

MTAC, v. 1, p. 157. The relations between the various solutions, when the parameter q is

either positive or negative, are also given.

In addition to formulae relating to Mathieu functions of fractional order (stable solu-

tions) the author devotes considerable space to the "unstable" solutions. It is shown that,

when the solution is put into the form

yi = e<" £ ctr+,«<,r+),)'i,
r—»

(with p = 0 if (a, g) lies between a2m and b2m and p = 1 if (a, g) lies between b2m+i and

ajm+i) then c2r and C-2, are conjugate complex numbers, if expressed in terms of to, real;

furthermore if p = 1, then c2r+i and (ci/c_i)<:_jr_i are conjugate, if c\ is taken to be real.

It is shown that there exists a real solution of the differential equation which tends to

zero as z —► — » through real values, if a, g, and u{ > 0) are real. Solutions denoted by

cf,n+(1(± z, g) are defined, analogous to the solutions cem(± z, g) for integral m; similarly

for sem+ß{zk z, q). Such solutions are neither even nor odd. It is shown how to construct even

and odd solutions, but they are less useful than cem+)1(± z, q) and sem+(,(± z, g).

For the same g and ¡i, there are too values of a. One is such that the solution approaches

cem(z, g) as u—»0; the second a corresponds to the solution which approaches sem{z, q) as

It—*0. Solutions of fractional order corresponding to Mathieu's modified equation are

also given.

The paper contains a number of asymptotic expansions for Mathieu functions of in-

tegral order, both for large z and large q. These expansions involve certain multipliers (re-

sulting from the normalization adopted) which cannot readily be expressed asymptotically.

To this extent the solutions for large q, in a practical case, are really never obtainable by

the given asymptotic formulae—they are known except for those multipliers which are

functions of g.

It is this unfortunate property of the normalization adopted by McLachlan (and the

English school generally) which is at the crux of the divergence of opinion, regarding the

normalization scheme, between the English and American schools.

The author concludes with a section on the zeros of the functions and another on the

classification of the various solutions of integral order, fractional order, and the unstable

solutions. A useful iso-n chart, the data for which are credited to Dr. L. J. Comrie, is

also given.

The paper is concisely written and represents a prodigious effort, both as to span
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covered and the variety of formulae given. It forms a priceless compendium of known results

(with a very considerable portion of them due to the author himself). The summary given

above by no means covers all topics treated. It is hoped that the book promised by the

author, enlarging on the theory covered in this paper, may soon be forthcoming.

Gertrude Blanch
NBSMTP

1 In the author's diagrams, the horizontal lines in the a-q plane are parallel to the "g"
axis. Hence it might have been better to refer to the "q-a" plane, and to the parametric
point as (g, a). We shall not, however, depart from the author's notation.

* Mrs. Ida Rhodes of the NBSMTP checked this reviewer's inversion. Dr. McLachlan
pointed out that the second term of (4), given incorrectly in (a), is correct in (b).

* These three entries are corrections of the printed values, furnished by Dr. McLachlan.
Editor.

4 B. Sieger, "Die Beugung einer ebenen elektrischen Welle an einem Schirm von
elliptischem Querschnitt," Ann. d. Phys., s. 4, v. 27, 1908, p. 626-664.

1 M. J. O. Strutt, Lamésche-Mathieusche und verwandte Funktionen der Physik u.
Technik, (Ergebnisse d. Math., v. 1, no. 3), Berlin, 1932, p. 46-48.

383[L].—J. C. P. Miller, "Two numerical applications of Chebyshev
polynomials," R.S. Edinb., Proc, v. 62, no. 22, 1946, p. 204-210.
17.5 X 25.7 cm.
1. The strong convergence of an expansion in Chebyshev polynomials renders them

useful for interpolation. Let /(a + t) be expanded into a series of C«(4i/A). The coefficients

an of this expansion are expressible in terms of the derivatives f^ia). They are also ex-

pressible in terms of central differences. The corresponding formulae are derived by opera-

tional methods and numerical tables given. Even if high central differences are needed, the

smaller number of am terms makes interpolation more convenient, particularly in conjunc-

tion with a table for the C„(x). A numerical example illustrates the advantage of the method.

2. Since an expansion in Chebyshev polynomials is merely a modified form of a Fourier

series, a table of the Chebyshev polynomials becomes useful for harmonic synthesis whenever

the sum of a Fourier series is required for arguments which are convenient numbers in

x = 2 cos S rather than in $ itself. An application is given, showing how the evaluation of

the Mathieu functions can be facilitated by this procedure.

Cornelius Lanczos
12012 Ren ton Avenue

Seattle 88, Wash.

384[L].—Frank H. Slaymaker, Willard F. Meeker & Lynn L. Merrill,
"The directional characteristics of a free-edge disk mounted in a flat

baffle or in a parabolic horn," Acoustical Soc. Amer., Jn., v. 18, Oct.

1946, p. 363-368. 19.4 X 26.6 cm.

There are two tables on p. 367. T. I of

*M = ^7^/o(X.r) + 7o(X»r)
Ji(X„a)

r/a = 0(.1)1; X„a ~3.01, 6.21,9.37 for» = 1(1)3; n = 1, 2 to 3S, and n = 3 mostly to4S.

G = Ji(ka sin <t>)/ka sin <t>;

P„ - — Ii(Ka)lXnaJl(X„a)J(,(ka sin <)>) — ka sin 4>J0(\„a)Ji(ka sin <*>)]

+ [7i(X„a)(X„2a2 - *'a2 sin2 <*>)], if X„ * k sin <t>

= - 7i(X„a)[/02(X„a) + /,2(X„a)]/[2/,(X„a)l if X„ = ¿sin*;

Qn = [KaI¡(Ka)Jo(ka sin <t>) + ka sin ¡t>Io(\na)Ji(ka sin #)]

+ (X„2a2 + ¿2a2 sin2 <t>).

T. II is of G, Pn + Qnln = 1(1)3], mostly to 3S, for easing = 0(.5)10(1)12. There are

graphs of Pi + Qu P2 + Q2, P3 + Q, on p. 368.
R. C. A.
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385[L].—Francesco Tricomi, "Generalizzazione di una formula asintotica
sui polinomi di Laguerre e sue applicazioni," Accad. délie Scienze di

Torino, Cl. d. sei. fis., mat., e nat., Atti, v. 76, 1941, p. 288-316. 16.6 X 25
cm.

The Tricomi polynomials of Laguerre1 are defined by

Ln(t) = (n!)-'e'<i»(í-'<»)/á/- = M(- n, \,t)

= (- l)-(nl)-' [<" -Jit"-1 + nH" ~ iyt'^-+ (- I)-».]-

(n\ t       / n \ t» , t"

= 1-(i)r! + (2)2T--+(-1)"ñ-i

This is the case where a = 0 in the more general formula

Ln+„(l) = (nl)-1e'r'd«(e-'t"+«)/df = M(- n,a + 1,').

In Tricomi's paper are the following:

p. 292, values of e-*'L,n(t), for t = [.5(.5)3(1)8(2)34; 5D], A;

p. 302, a 4D table of the roots of the equations x + sin x = a, for a = 0(.1)3(.02)3.18;

p. 303, graph of zeros of Ln(t) for n = 1(1)10;

p. 315-316, table of e-i'L„(t); n = 1(1)10, t = [.1(.1)1(.25)3(.5)6(1)14(2)34; 4D].

The polynomials Ln(t) and their properties were given in E. N. Laguerre, "Sur l'intégral

f°°e-'dx/x," Bull. Sei. Math., v. 7, 1879, p. 72-81; Oeuvres de Laguerre, Paris, v. 1, 1898,

p. 428f (L„(t), p. 430). Ln+a(t) seems to have been discussed simultaneously with L„(t), by

N. Sonin, in a memoir dated Aug. 1879, Math. Annalen, v. 16, 1880, p. 41 (function 7V*).

The first one to refer to L"+a(t) as generalized Laguerre polynomials appears to have been

another Russian, Wera Myller-Lebedeff, Math. Annalen, v. 64, 1927, p. 410.

The so-called polynomials of Laguerre were introduced into mathematical analysis by

Lagrange,2 more than 130 years earlier than Laguerre, in his solution of a dynamical

problem in which the oscillations of a vertical chain are represented approximately by those

of a set of similar weights equally spaced on a light string. (See H. Bateman, "Lagrange's

compound pendulum," Amer. Math. Mo., v. 38, 1931, p. 1-8.) The polynomials were also

considered by Abel, in 1826, "Sur une espèce particulière de fonctions entières nées du

développement de la fonction (1 — v)~le~'"lll~v) suivant les puissances de v." ' This function

is equal to 51 £*(x)w*/ife!. In H. Bethe, "Quantenmechanik der Ein- und Zwei-Elektronen-
jt

probleme," Handbuch der Physik, second ed., v. 24i, Berlin, 1933, p. 289, this result is

attributed to E. Schrödinger,4 just 100 years later.

Laguerre polynomials are also of use in (a) the theory of hydrogen-like atoms; (b) the

problem of numerical integration over the range 0 to + °° [Gauss's method with Legendre

polynomials for ranges —1 to +1, or 0 to 1; Hermite's polynomials for the range — °° to

+ °°3; (c) the discussion of the mathematical foundations of the electromagnetic theory of

the paraboloidal reflector.6 In Bateman's Bibliography6 there are 47 references for L„(x),

and 73 for "L„°(x)."

In preparing this RMT I have been indebted for some assistance from Dr. J. C. P.

Miller, and from Dr. Alan Fletcher.

R. C. A.

1 See MTAC, v. 1, p. 361, 425; and v. 2, p. 31 [where L„(x) is defined without the factor
(n!)-'], 89.

2J. L. Lagrange, "Solution de différents problèmes de calcul intégral," Miscellanea
Taurinensia, v. 3, 1762-65; Oeuvres, v. 1, Paris, 1867, "Des oscillations d'un fil fixe par une
de ses extrémités, et chargé d'un nombre quelconque de poids," p. 534-536; there are four
of the polynomials on p. 536.

' N. H. Abel, Oeuvres Complètes, Christiania, 1881, v. 2, p. 284.
4'E. Schrödinger, Annalen d. Physik, v. 385, 1926, p. 485.
6 Pinney, Jn. Math. Phys., v. 25, 1946, p. 49f. Harry Bateman's Bibliography, p. 77-79.
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386[L, M].—S. A. Khristianovich, S. G. Mikhlin & B. B. Davison,
Nekotorye novye voprosy mekhaniki sploshnol. sredy [Some new questions

in mechanics of a continuous medium]. Moscow and Leningrad, Akad.

N., Matematicheskiï Institut imeni V. A. Steklova, 1938. 407 p. 16.7 X
25.3 cm.

We shall list certain tables in this volume p. 274-336 of a section written by Davison,

and p. 392-395 of an appendix to the work, presumably written by the joint authors.

On p. 274 a table is given of

kirx/q = tan"1 Ve*"»'« - 1 - Ü/mW«"*»'« - 1

for kry/q = [0(.2)3; 5S], 1/M - 1(1)4.

J°    Vl -tsin'0 K^>

On p. 334 there is a table of \y(t), to 3D, for/ = 0(.0OOOl).OOOl(.0OOl).0OO5(.O0O2).0015,
.002(.001).01(.003).016, .02(.005).05(.01).1(.02).2(.1).5.

On p. 335-336 are the following five tables:

(a) z =  fl y-^ ,       (b) e-"'" ,       to 3-4S,
•'»¡-X

for -X = .01, .1, .2, .5(.1).7, 1(1)3, 5, 8, 15, 20, and X - 1.05, 1.1, 2(1)8, 12, 15, 20.

(c) 7(X),        (d) w = R [ /; ^f ] ,        (e) |i"«"'»*| ,

mostly to 3-1S, for X = .00001, .005, .01, .05(.05).3, .4(.05).6, .7(.05).95, .99, .995, .9999,
.99999. In (a) and (d) approximations are given to true results with possible maximum devia-

tions. Before discussing the remaining tables in the volume we may quote some results from

B. A. Bakhmetev, Hydraulics of Open Channels, New York, 1932, p. xv-xvi, 308-311:

If y is the depth or stage of flow, y<¡ the normal depth of flow or the depth of flow in uniform

movement, and r> = y/yo, then the varied flow function B(rf) = — /- , n being

the hydraulic exponent. There are tables of B(i¡) (f) for i, > 1, (g) for i, < 1, » — 2.8(.2)

4.2(.4)5.4

(f) v = 1001, 1.005(.005)1.02(.01)1.2(.02)1.5(.05)2(.1)3(.5)5(1)10, 20

(g) , = 0(.02).6(.01).97(.0O5).995, .999.

Now on p. 392-395 are tables of

^--d„        (k)C(,)= /   -j—-</,,
.„ ij* — l J*o »r — i

* - 2n + 1, for * = 3(» = 1), 4(» = 3/2), i, = [0(.Ó5).6(.01).9(.005)1.05(.01)1.5(.05)2(.l)
3(.5)5, 6(2)10; 4D], A.

By trial we found that in the table of A(t¡), when k = 3, ijo = 0, for ij < 1, and ijo ■■ "»
for ij > 1. We were unable to determine the values of >jo leading to the table of C(r¡), or to

that of A(t¡), when * = 4.

S. A. J. & R. C. A.

387[L, M].—NBSMTP, "Table of the Struve functions /_„(*) and H,(x),"
Jn. Math. Phys., v. 25, Oct. 1946, p. 252-259. 17.3 X 25.3 cm. This is
Applied Mathematics Panel, Report 59.1, referred to in MTAC, v. 2,

p. 39.
The functions in question are, in Watson's notation, in effect,

Ln(x) = ¿ a„(x);        Hn(x) - ¿ (- l)»a„(x),
m—0 m—0
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whci*6

«-(*) - (i*)*"+,+"/r(m -f i)r(m + » + !)•
Also

£„(x) - ArJ^1' sinh(x cos 9)sin2»9<i»,        N m 2(Jx)-/r(n 4- J)r(J),

íí»(x) = N J*,rsin(xcos 9)sin»»i?<i(7,       provided that Ä(n) > - J.

But for ail n

Ln(x) - A,(x) + B,(x),       tf„(x) = Anix) - Bnix),
where

« m

An(x) - E oi-(*). B.(x) = £ <!*,+,(*).

Tables are given of L„(x) and /Z»(x), n = 0, - 1, - 2, x = [0(.1)10; 7-10S]. Lo(x), L_i(x),
are also with í'and *í4 modified throughout the range; L-2(x) with i2and *i4 for x = 2.1 (.1)10

For x = 0(.1)2, L_j(x), xL_«(x), i2(xL_,), *i4(xL_s) are given. In the case of Ht(x) and

iZ_,(x), and J7-,(x), for x = 2 (.1)10, *i> is given ; fll2(x) for x - 0(.1)2, also ïff.,(ï), has *«».

JT,(x) - 2/r - ff-K*),       £,(*) = - 2/t + L_,(x).

Watson1 has tabulated /io(x) and /J"i(x) x = [0(.02)16; 7D], no A; hence linear in-

terpolation is here correct to about 5D. Jf_i(x) is readily obtained from H,(x), and has

been tabulated before by Airey,2 for x = [0(.02)16; 6D], and by Jahnke & Emde,* for

x » [0(.01)14.99; 4D]. ff-six), Z,_i(x). and L_j(x) seem to be here independently tabulated

for the first time.

Karl Hermann Struve investigated4 only the special functions Hn(x) and Ht(x), but

properties of the general function were later extensively developed by Siemon6 and Walker.'

The function L„(x) bears the same relation to Struve's function H„(x), as In(x) bears to

A(x); Ln(x) - i-"lH„(ix), La(x) i-iHcdx); L0'(x) = 2/r - H,(tx).   Tables of L„(x)

and Lo'(x) for x = [.02, .1, .5, 1(1)12; 6-7S] were given by Owen.' Hn(x) = (- i)»+iLn(ix),

and

í7„(x¿') = in+1L„(xt'l) = ster„x -f- i stei„x,

a notation due to McLachlan & Meyers8 (see MTAC, v. 1, p. 252, 460). For tables of

y = ít[/o(x) — Lo(x)} and — / = 1 — iir[/i(x) — Li(x)] by R. Zurmühl and R.

Müller, see MTAC, v. 2, p. 59; and on p. 39 a table by Great Britain, Nautical Almanac

Office, of f(x) = Te-*(2x)-1[/,(x) + L-i(x) - 2/x].

When n is half an odd positive integer Hn(x) is expressible in terms of elementary func-

tions. For example, H\(x) = £(1 — cosx)'= B — 7_)(x), where B = [2/(ix)]*. For vari-

ous tables of /)(x) = i/_j(x), see AfT.4 C, v. 1, p. 233.

R. C. A.

1G. N. Watson, A Treatise on the Theory of Bessel Functions, p. 328-329; tables, p.
666-697.

2 J. R. Airey, BAAS, Report, 1924, p. 280f, - Jï_i(x) is also tabulated here for the
same range.

»Jahnke & Emde, Tables of Functions, fourth ed., New York, 1945, p. 219f. Hoix) is
also tabulated here for the same range, p. 212f, and 218f. There are also two other tables
of Hoix) and Hiix), to 4D, by S. P. Glazenap, Matematicheskie i Astronomicheskie Tabliisy,
Leningrad, 1932, p. UOf, x = 0(.02)16, an abridgment of Watson; and by N. W. Mc-
Lachlan, Bessel Functions for Engineers, 1934, p. 176, x = 0(.1)15.9.

4 See MTAC, v. 1, p. 305.
' P. Siemon, Ueber die Integrale einer nicht homogenen Differentialgleichung zweiter

Ordnung. Progr. Luisenschule. Berlin, 1890; see Jahrb. Fort. d. Math., 1890, p. 340f.
6 J. Walker, The Analytical Theory of Light, Cambridge, 1904, p. 392f.
7 S. P. Owen, "Table of values of the integral Jl' K¡,it)dt," Phil. Mag., s. 6, v. 47,

1924, p. 736; see also MTAC, v. 1, p. 245, 247, 301.
'See also N. W. McLachlan & A. L. Meyers, (a) "The ster and stei functions"

(b) "Integrals involving Bessel and Struve functions," Phil. Mag., s. 7, v. 21, 1936, p.
425-436, 437-448.
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f(x)cosakdx

Xoo
f(x)sin(ax)dx," Norsk Matem. Tids., v. 27, 1945, p.  65-75;

tables, p. 70-71. 15.5 X 23.2 cm.
J*» sin ax

»  1 + x2

= cosh a shi a — sinh a chi a

= 1/a + 2!/a' + 41/a» + • • ■ + (2n) !/a»"+1

S'ia, 1) = — \[_e~"Ei(a) + e"Ei(— a)] = sinh a shi a — cosh a chi a

■■-[1/a2 + 3!/a4 + 5!/a« + •••]•

T. I, S(a, 1), for a = [0(.01).1(.1)1(1)10(10)100; 5D]; maximum value at a ~ .8791 is
approximately .64996.

T. II, S'ia, 1), for the same range of a as in T. I; zero value at a ~ .8791, and minimum value

at a ~ 1.8594 is approximately — .15583.

389[L, M].—Edmund C. Stoner, "The demagnetizing factors for ellipsoids,"

Phil. Mag., s. 7, v. 36, Dec. 1945 (publ. Sept. 1946; note added in proof
28 May 1946), p. 803-821. 17 X 25.4 cm.
J. A. Osborn, "Demagnetizing factors of the general ellipsoid," Phys.

Rev., v. 67, 1945, p. 351-357. 19.2 X 26 cm.

The formulae for the demagnetizing factors, in terms of F and E, are

D° = L,A* - (a2 - C2)>(12 - b>) CF(*' *> - E{k' *)]

sin3 <)> sin2 a

D„ - M/i* = --°b* IFik, «) - £(*, ♦)]
(a2 — c2)*{a? — b2)

abc r*
+-;-E(k, 4>)

(a2 - c2)»(¿>2 - c2) ft2 - c2

cosö cos 0        f"    , sin2 a sin 0 cos </>'
— [ £(*, <t>) - cos2 «F(fc, 0) -
2 a Lsin3 0 sin2 a cos2 a L cos 0

±r^±co10_E(k<t>)i
2 a L      cos <£ J

¿>2 cos 9 cos <¡> f" sin tf> cos 0

b2 — c1     sin3 <t> cos2 a L     cos <£

where *2 = (a2 — 62)/(a2 — c2) = sin2 a, cos 0 = b/a, cos </> = c/a; a, 6, c(a £ 6 £ c) are

the semi-axes of the ellipsoid. Da-V D0 -\- Dc = 1.

Consider first, ellipsoids of revolution: a polar semi-axis, b equatorial semi-axis, m = a/b,

u = b/a; m < 1 and m > 1 an oblate spheroid; m > 1 and /* < 1 a prolate spheroid. Then

r<c ds lfm
Da = \aV i    - = -    -cosh-1 m - 1     ,    m > 1,

*      Jo   (au + i)l(fc2 + j)       (m2 - 1) L (m2 - 1)» J

1        T m ~\
= z-:    1 — ;-r, cos l m \ ,    m < 1 ;

(1 - »i2)L (1 - m2)« J

A   =   i(l   -  Da).

Stoner gives tables (p. 816-817) of D„ m or y. = [0(.1)5(.5)10(1)25(5)50(10)150(50)400
(100)1300; 6D], In general the w-table will be appropriate for prolate spheroids and the

M-table for oblate spheroids. To ensure accuracy to the sixth place, the calculations were

carried out so as to give unit accuracy in the seventh place, and rounded six-place values

are presented in the tables.
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Osborn gives two tables (p. 353-354) of demagnetizing factors of the general ellipsoid,

L/4x, M/4ir, N/4r, for (T. I) cos<M = c/a), 0 = 10°(10o)70°(5°)85o, 88°, 89°, and for
cos 8 (= b/a), 0 = [0(10°)90°; 5D]. Also (T. II) cos 0 = .1(.1)1, cos* = various values.

There are three large-scale graphs of L/4», M/4t, iV/4ir, for 0 $ c/a ^ 1, b/a = 0(.1)1.

In T. II the values are accurate to 3D and are probably in error several units in the fourth

place.

Stoner has a single graph of these same functions for b/a = .2(.2)1.

R. C. A.

390[L, P].—N. W. McLachlan, Bessel Functions for Engineers, Oxford

Univ. Press, London, Geoffrey Cumberleye, 1946. xii, 192 p. Reprinted

photographically., 15.3 X 23.3 cm. 18 shillings.

This very useful volume of the Oxford Engineering Science Series first appeared in 1934.

In the corrected photographic reprint published in London in 1941, two pages were added;

the new material included an introductory "Note," a page of "Additional formulae," and

20 (instead of 6) "Additional references." In the Note it is remarked that "The omission

of contour integral representation of Bessel functions and its technical applications has

been rectified through publication [by the author] in 1939 of Complex Variable and Opera-

tional Calculus with Technical Applications," and a correction of an error on p. 300 of this

volume is noted.

We have already referred to various tables in the volume under review (see MTA C, v. 1,

p. 212, 216, 220, 246, 247, 254, 255, 257, 258, 297). In the right-hand member of formula 147,
p. 167 one error still persists; the sign — should be changed to +. The 1946 edition is an

exact reprint of that of 1941, except for the correction of four signs, two in each of the lines

- 3 and — 5, p. xi, "Additional Formulae."

R. C. A.

391[L, S].—C. Strachey & P. J. Wallis, "Hahn's functions Sn(a) and
Um(a)," Phil. Mag., s. 7, v. 37, Feb. 1946 [publ. Nov. 1946], p. 87-94.
16.8 X 15.1'cm.

"In a paper1 on the calculation of fields in certain resonators, Hahn introduced two

new functions:

_ ,  .       ^.   m% sin* nra ,
- Sm(a) - ¿^ ——-—- ,    and

n=lrt(»j2 — n2a2)

.    , x      ^ a2m2n2 sin2 nra
«V-Í«) - £ ~-¡-T^- ,    w.th    0 < a < 1,

B.i   im2 - n2a2)*

and used these functions to shorten his calculations. Since this time, Hahn's method has

been used for certain similarly-shaped resonators and Hahn's two functions usually help

to shorten the solution considerably. Hahn himself only gave a small table of Smia) and a

few values of Um(a).1

"In this report closed expressions are derived for the case of a rational, and are used

to produce a much more comprehensive table of Smia) and a slightly smaller table of

U„ia)/m. In a concluding section integral expressions, power series in a, and asymptotic

series in m are given which together facilitate the calculation for values of a not given in

the tables."

Tables: - Smia), for m = 1(1)10, a = [0(.1)1, .25, .75, i, |; 5D];
U„ia)/m, for m = 1(1)10, a = [0(.25)1, J, i; 5D].

Extracts from text

1W. C. Hahn, "A new method for the calculation of cavity resonators," Jn. Appl. Phys.,
v. 12, 1941, p. 62-68. There are 2D values of - SJa) form = 1(1)9, a = 0(i)i(A)f(t), 1:
also - Soia) fora = 0(i)J, &; and of Um(\), m = 1(1)4. See MTAC, RMT 208 and
MTE 69, v. 1, p. 425, 451.—Editors.
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392[M].—National Research Council of Canada, Division of Atomic
Energy. Report no. MT-1 dated Chalk River, Ontario, December 2,

e~xuu~ndu, 39 leaves mimeographed on

one side, with covers. Introductory material, p. 1-7 by G. Placzek;

Appendix A, an asymptolic expansion for E„(x), by Dr. Gertrude

Blanch, p. 8; Tables, by NBSMTP, p. 9-39. 20.3 X 27.4 cm. This
edition contains corrections of one which appeared in July-August 1946.

The functions £„(x) play an important role in diffusion theory. The discussion of

certain integral equations can be simplified by their use; expansions in terms of these func-

tions are also often found convenient for the numerical evaluation of integrals occurring in

connection with transport problems. The functions have been defined by SchlöMILCH,1 and

have been extensively used by Schwarzschild,2 Eddington,3 Hopf,4 and others. In spite

of this no systematic effort for their tabulation seems to have been made up to the present.

An attempt by Mian & Chapman5 to approximate the functions by "index sums" was not

accurate enough for our purposes.

Enix) is here tabulated, for n - 0(1)20, x = [0(.01)2; 7D], [2(.1)10; 7-10D]. On p. 39
are tables of £2(x) -xlnx, forx = [0(.01).5; 7D], and of £i(x) 4- ix'lnxforx - [0(.01).l;

7D], for use in interpolation. Since £i(x) = — Ei( — x) = JV° e~*u~~*du, there are extensive

tables of this function in NBSMTP, Tables of Sine, Cosine, and Exponential Integrals, v. 1-2,

1940, for x = [0(.0001)2; 9D], [0(.001)10; 9S]; [10(.1)15; 14D].
Extracts from introductory text

Editorial Notes: In FMR, Index, p. 207, are given details of 8 tables, £_n(x)
= JV° e~*"undu = x_<"+1,^°° e~"Wdu, five of them including negative values of n. £o(x)
= e~*/x, of which values for x = fj.l(.001)1 (.01)2; 9D] are given by W. L. Miller & T.
R. Rosebrugh, "Numerical values of certain functions involving e~x," R. Soc. Canada,
Trans., s. 2, v. 9, 1903, sect. Ill, p. 102-107. See also Takeo Akahira, "Tables of e~*/x
and Jlm e~udu/u, from x = 20 to x = 50," Inst. Phys. Chem. Research, Tokyo, Sei. Papers,
Table no. 3, 1929, p. 180-215; the interval of the table is .02, to 5-6S, A».

1 O. Schlömilch, "Ueber Facultätreihen," Z. Math. u. Phys., v. 4, 1859, p. 390f.
2 K. Schwarzschild, (a) "Ueber das Gleichgewicht der Sonnenatmosphäre," Gesell, d.

Wissen., Göttingen, Nach., Math-phys. Kl., 1906: p. 41f ; (b) "Über Diffusion und Absorption
in der Sonnenatmosphäre," Akad. d. Wissen., Berlin, Sitzb., 1914, p. 1183f.

3 A. S. Eddington, The Internal Constitution of the Stars, Cambridge, 1926, p. 333.
4 E. Hopf, Mathematical Problems of Radiative Equilibrium iCambridge Tracts . . .,

no. 31), 1934, p. 21, etc.
1 A. M. Mian & S. Chapman, "Approximate formulae for functions expressed as definite

integrals," Phil. Mag., s. 7, v. 33, 1942, p. 115f. It is noted that £„(x) arises in the theory
of absorption of radiation in an exponential atmosphere. There is a table on p. 119 of ap-
proximate values of £„(x), for n = 2(1)8, for x = 0(.5)3(1)6, also .01, .05, .1, .25.

393[M].—W. Sokolovsky, "Plastic plane stressed states according to

Mises," Akad. N., USSR, Leningrad, (Dok.), C. R., n.s. 1946, v. 51,
p. 177. 16.8 X 26 cm.

There is here a table of

: Rit)dt
-a(x) _i <*i

= 2 J\t sin t

= U - sin~1(2 cos x/3») + i tan"1 [(4 cosx + 3)/#(x)] + \ tan"1 [(4 cos x - 3)/£(x)],

where Ä(x) = (3-4 cos2 x)*, for x = $*■ to |t, mostly at interval ^fir, to 3D.

394[M].—-A. J. C. Wilson, "The integral breadths of Debye-Scherrer lines
produced by divergent X rays," Phys. Soc, London, Proc, v. 58, July

1946, p. 407. 18 X 26 cm.

There is given here a table of ZJ(tt) = 4«-4/0''[C2(«) + 52(«)]««f«, for « = [0(.1)5;4D],
5D for « < 1. For u < 2 the values were calculated from the series for D(u), those for
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« > 2 by numerical integration of four-place tables of C(u) and S(u). In the range .5 to 2

the greatest difference between the values calculated by the two methods is .0003; the mean

difference is about .0001.

Extracts from text

395[N].—Erich Michalup, "Beitrag zur Amortisationsrechnung," Skandi-

navisk Aktuarietidskrift, 1946, p. 80-84. 15.5 X 23.5 cm.

With references to earlier discussions by E. Lindelof, K. A. Poukka, A. Berger, R.

Palmqvist, H. Holme, and E. Franckx, the author considers the following five formulae

and gives tables for each of them to 7D for half-yearly, quarterly, monthly rates ip ~ 2, 4,

12), for i~ 1%(1%)9%:

1/,      /» - 1 . \                   1/,      P-i . ,   (P- l)(2/> - 1) ,\
ap-1-— t    ,        a,-1 - --« + —--^-¡--»»),

P\ 2P     / P\ IP 6p> }'

396[Q].—Enrique Vidal Abascal, El Problema de la Órbita Aparente en
las Estrellas Dobles Visuales: Diss. Spain, Consejo Superior de Inves-

tigaciones Científicas, Instituto Nacional de Geofísica, no. 6, Observa-

torio de Santiago, Publicaciones, II, Santiago de Compostela, 1944. xvi,

62 p. 21.2 X 27 cm.

Consider ellipses with common major semi-axis, OA = 1, and eccentricities e = the

length of OFi = .1(.1).9; then the foci F¡, i = 1(1)9, divide OA into tenths. Suppose that

a unit circle, with center at 0, has been drawn, and P is any point of the circumference,

then FiP and F%A are the sides of circular sectors, F¡APFi, whose angle a may increase from

0 to 360°. A table, p. 53-62, gives the area of such sectors, to 4D,i = .l(.l).9,a = 0(1°)360°.

R. C. A.

397[U].—Francisco Radler de Aquino, "Universal" Nautical and Aero-
nautical Tables. Uniform and Universal Solutions Ultra-simplified. Rio de

Janeiro, Imprensa Naval, 1943, 18, 247 p. 17.5 X 24.5 cm. Copies of
this volume may be had from Weems System of Navigation, Annapolis,

Md. at $9.00.

The author of these tables, a captain in the Brazilian Navy, is well known to navigators

around the world, having published more than fifty papers on navigation in the past forty-

eight years. Not so well known is the fact that he was born in New York City on January

23, 1878; his mother was an American, his father a Brazilian. He moved to Brazil at the

age of 13 and entered the Brazilian Naval Academy at 15.

This volume is the second Brazilian edition of a book which was first published in

Rio de Janeiro in 1903. Editions were published in London in 1910, 1912 with reprintings

in 1917 and 1918, and in 1924; and in Annapolis, Md. in 1927 and 1938. The title and content
of the tables have changed slightly from edition to edition. For those familiar with the

earlier editions, it may be said that the principal change in this edition is the reduction of

the interval of the argument, latitude, from Io to 10'. The method and the tables continue

to be universal in that they allow the determination of the altitude and azimuth whatever

the values of latitude, hour angle, declination and altitude.

The first eighteen pages in this volume include the title page and explanation of the

tables in English; the next sixteen pages (numbered 1 to 16 also) present similar but not

identical material in Portuguese. The principal table was designed to be used in a solution

of the astronomical triangle in which a perpendicular is dropped from the zenith upon the
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hour circle through the celestial body. The length of the perpendicular and the declination

of its foot, are called a and 6 respectively. The angle at the zenith between the perpendicular

and the meridian (toward the elevated pole) is called a; that between the perpendicular and

the great circle from the zenith to the celestial body is called ß. L, t, and d denote the latitude

of the observer, the local hour angle and the declination of the celestial body respectively.

A is the angle of the astronomical triangle at the celestial body. C is the angular distance

from the celestial body to the foot of the perpendicular.

The basic equations for the solution of the two right triangles are obtained by Napier's

rules; they are:

csc a = sec L csc /; tan 6 = tan L sec t

tan a = csc L ctn t; csc h = sec a sec C

tan A = tan a csc C;       tan ß = tan C csc a

The rules necessary for the use of the equations and the tables are given on the pages

numbered 8 in the explanations in English and Portuguese. At first sight, they appear to

be of the same order of complexity as those in H.O. 208, Dreisonstok (RMT 103), but use

proves them to be somewhat simpler.

The principal table (p. 36-215) has as vertical argument the local hour angle, t, 0(10)90°,

and as horizontal argument the latitude, L, 0(10')89° 50'. The tabulated quantities are a

and b as defined above, each to the nearest minute of arc, and a. The values of a are given

in heavy type to distinguish them from those of b. On the right-hand side of the page, a is

given to the nearest tenth of a degree for each degree of local hour angle and for the middle

of the degree of latitude.

One enters the table with the dead-reckoning latitude rounded off to the nearest ten

minutes of arc and with the local hour angle of the body to the nearest degree; a and b are

copied out for these arguments and a is taken for the nearest half degree of latitude. C is

formed using the equation, C = 16 — d \. One re-enters the table looking for a (rounded

off to the nearest 10') at the bottom of the page and C (to the nearest degree) along the right-

hand side of the page. With these arguments, the dark-faced column yields the altitude, h,

and ß is found in the right-hand column opposite it. The azimuth angle is found by adding

a and ß.

In the explanation, the author indicates that the determination of ¡3 by this method

is weak and proceeds to give three other methods of finding it. The first two involve the

substitution of arguments; one can look for 90° — C in the ß column and interpolate the

value of ß in the left-hand column above B, or one can interchange the values of a and C

and interpolate the value of ß in the column footed A. The third method is to use the last

equation above with a table of log tangents and log secants. Actually the table given is one

of values of 10s log tan x and 10» log sec x to the nearest integer for argument x, 0(1')89° 59'.

To allow for the minutes discarded in a and C, Aquino suggests the use of:

AÄi = Aa cos ß,        AÄj = AC cos A.

He provides a "difference of latitude and departure" table to simplify their use; the table

will also be useful in dead reckoning. To allow for the minutes of latitude discarded, another

table is provided on the inside of the back cover and the page facing it. This same table is

offered on the two sides of a separate sheet of cardboard and again on one side of a separate

folded sheet of heavy paper. The corrections, Afci and Afcj, may be avoided by the use of

the equation for csc A, and the log tangent — log secant table.

The author states that the tables were computed by means of Callet's and Bagay's

seven-place logarithms, with many values determined by V'lacq's ten-place logarithms;

Vega's ten-place table, based on Vlacq, is much more accurate. He further states that if the

declination be taken to the nearest tenth of a minute, and A&i and Ah* used, the maximum

possible error in h will be 1.6' but that the actual error in practise will hardly ever be over

0.5'. If only AA2 is used, the altitude obtained is always within 5' of the true calculated alti-

tude. Although the volume under review is dated 1943 there is in it a yellow sheet dated

9 April 1946, listing 32 corrigenda.
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Other tables contained in the volume are four-place logarithms and antilogarithms with

convenient proportional parts tables, distance to the horizon and dip of the horizon for

different elevations, combined corrections for refraction, dip of the horizon and, where they

are significant, semidiameter and parallax for planets and stars, upper and lower limb of

the sun and lower limb of the moon, for altitudes 8° to 90° and for elevations 0 to 15 meters.

A similar table for the upper limb of the moon would make a worth-while addition. A small

auxiliary table allowing one to correct altitudes less than 8° for refraction is a valuable item,

not often found in navigation tables and especially needed in the polar latitudes.

A table that remains in use almost half a century while other tables come and go, can

reasonably be said to have a strong appeal to the average navigator. To appreciate Aquino's

great contribution to navigation, one needs only to compare the first edition of this table

which appeared in 1903 with other tables and methods then in use. It is unlikely that a

person who has been trained in the use of H.O. 214 or H.O. 218 will change to this table,

but a person who learned Aquino's method first might continue to' prefer it because of its

beautiful simplicity, its universality and the small bulk of the tables.

Charles H. Smiley
Brown University

398[U].—W.  Myerscough & W.  Hamilton, Rapid Navigation  Tables.
London, Pitman, 1939. ii, 109 p. 16.4 X 26.6 cm. 10s. 6d.

These tables are designed for the solution of the astronomical triangle for altitude, A,

and azimuth, Z, when latitude, L, hour angle, t, and declination, d, are known, and for

similar problems. In the procedure for the determination of A, Myerscough & Hamilton

follow such tables as those by Souillagouet, Ogura, Weems (RMT 315), Dreisonstok

(RMT 103), and Hughes-Comrie (RMT 115), each of which divides the astronomical

triangle at the zenith into two right triangles. The first triangle is solved for tabular values

of L and i by a table which gives the remaining parts, as angles or as logarithmic functions

of angles, without interpolation or other calculation. The second triangle is solved for A by

logarithmic processes. The several tables differ only in notation and in that one of the

auxiliary angles used in some of the tables is the complement of that used in the others.

In the determination of Z the several tables cited show a pleasing variety in method.

Dreisonstok and Comrie follow Bertin in deriving the two component parts of Z from the

same auxiliary triangles as are used in the determination of h. Souillagouet utilizes another

division of the astronomical triangle in order to get Z in one piece. Weems uses the graphical

"Rust diagram," and in his New Line of Position Tables (RMT 315) provides also an in-

teresting variation on the Bertin procedure. Myerscough and Hamilton, however, follow

Ogura in using the equation,

cot Z — cos L (tan d csc I — tan L cot t)

The most interesting and original feature of Myerscough & Hamilton is the inclusion

of all data in one table of 91 pages (0 to 90°). At the first entry the page is selected for I,

and for the left-hand argument L or d, as the case may be, the following quantities are

extracted :

P = length of side of first auxiliary triangle opposite zenith, deg. & min.,

Q = 106 log sec (side of same triangle opposite pole),

X = 10 tan L cot /,        Y = 10 tan d csc /.

For the second entry P is combined with d according to rules typical of such tables to give

a side of the second auxiliary triangle. The page being for the degrees of this argument,

and the entry by the minutes (using the same figures as were previously used for L and d),

the following quantity is taken from the A-column of the table: R = 10* log csc (P ~á).

For the third entry the J?-column is searched for Q + R = 105 log csc A, and A is obtained

by reading degrees at the top of the selected page and minutes in the left-hand column. The

equivalence of this procedure to those of the other tables cited is easily recognized. For
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the fourth entry into the tables the page is selected for the latitude, and the 2-column is

searched for Y — X = 10 cot Z csc L, and the azimuth is read opposite the nearest value.

The four necessary openings equal those required by the other tables cited, so that the

prospective user must seek grounds for preference in the arrangement of the tables, which

is entitled at least to study by other table makers.

The table would be easier to use if it gave the four values of t for which a given page

is used and not merely the one in the first quadrant. It would be improved also if the L

and d argument went from 0 to 90° instead of stopping at 70°. (With these changes and

two other minor ones the K-column might be used in the fourth step, in order to eliminate

the Z-column.) Since the tables are entered with L in the fourth step, there would be nothing

gained by rearranging the tables for entry with L in the first, as there is in Hughes-Comrie

and the new Weems. No data on the accuracy of the -table are available.

The tables of Myerscough & Hamilton and of the other authors cited above seek to

avoid interpolation in the second auxiliary triangle by the use of logarithmic trigonometric

functions. While there may be some historical justification for such a treatment, it should

be pointed out that H.O. 214 has accustomed navigators to interpolation. There is, accord-

ingly, good reason to reexamine the possibilities of such methods as that of Bertin, in which

both triangles are solved by a single table. The four openings of the various tables cited

above are reduced to two, with two interpolations of about the same magnitude as those

customary with H.O. 214 (RMT 399). The Bertin method is possible with the well-known

Sea and Air Navigation Tables of Captain Radler de Aquino (RMT 397), and with a new

Spheric Tabulations of R. C. Dove, R. F. D. No. 1, Collegeville, Penna.

Samuel Herrick
Department of Astronomy,

Univ. of California

Los Angeles

399[U].—U. S. Hydrographic Office, Publication No. 214, Tables of Com-
puted Altitude and Azimuth, Latitudes 80° to 89°, inclusive, Vol. 9. Wash-
ington, D. C, U. S. Government Printing Office, 1946, 3, xxiv, 263 p.
22.6 X 29.1 cm. This is the last of nine uniform v. of H.O. 214, each v.
devoted to 10° of latitude. For sale by the Hydrographic Office and by
the Superintendent of Documents, Washington, D. C, $2.25 per v.;

foreign price, postage extra.

This review will be limited primarily to a discussion of the differences between v. 9

and the other 8 v. of H.O. 214 which were reviewed earlier (RMT 105). This volume, like

the others, was prepared by the Work Projects Administration, (Philadelphia Project No.

24831), and presumably is of the same order of accuracy (see v. 2, p. 182f). The interval

of argument for hour angle is 1° as in the other v.; it might well be 2° or perhaps even 5°,

save for the loss of uniformity, since the tabulated altitude and azimuth change slowly and

in a relatively linear fashion.

The description of the tables and their use is almost entirely new and occupies some

ten pages more than that in the other v. The use of the pole as an assumed position is

explained as well as the use of gnomonic, stereographic, azimuthal equidistant and inverse

Mercator projections. A brief description of grid navigation is given.

Two ways in which this volume could be improved may be mentioned. The computed

altitudes might be carried down to 0° or at least to 2°, since in the polar regions, the sun,

moon, and planets spend a considerable fraction of the time at altitudes less than 5°; there

are blank spaces available for these data. The second change would be to replace the refrac-

tion tables given in the front by others especially prepared for the conditions of temperature

and barometric pressure commonly found in the polar regions.

Charles H. Smiley


