Admiralty Computing Service'

In 1942, in order to use more efficiently the scientific staff available in the
Admiralty, the Director of Scientific Research set up, within the branch
directed by Dr. J. A. CARrOLL, an Admiralty Computing Service to cen-
tralise, where possible, the computational and mathematical work arising
in Admiralty Experimental Establishments.

Mr. JouN Topp undertook the organisation and supervision of the Serv-
ice. By agreement with the Astronomer Royal additional staff were attached
to H. M. Nautical Almanac Office to carry out the computational work under
the direction of the Superintendent, Mr. D. H. SApLER. In addition, ar-
rangements were made to permit the employment of experts from the Uni-
versities and elsewhere as consultants.

The work undertaken by Admiralty Computing Service was in general
of one of two classes: heavy computation, or difficult mathematics. Alto-
gether more than one hundred separate investigations were carried out
ranging from projects involving several thousand hours’ computing to small
problems for which a solution could be obtained in a few hours. In addition,
a considerable amount of advisory work has been undertaken, usually in-
formally. For instance the Five-figure Logarithm Tables,reviewed in RMT 188,
were designed by Admiralty Computing Service for the Ministry of Supply,
as one item in a comprehensive program for providing the optical industry
with the tables they required. For various reasons, mainly owing to the in-
creased use being made of machines and to the availability of the U. S. re-
print of PETERS’ seven-figure table of natural trigonometric functions, other
tables were never published; but see under UMT 57.

Shortly after the formation of Admiralty Computing Service it became
apparent that research work in Admiralty (and other) Establishments would
be greatly facilitated if their members were informed in certain mathematical
and computational techniques not usually covered in undergraduate courses,
and of which no adequate account was available in easily accessible litera-
ture. Accordingly the preparation of a series of monographs of an expository
nature was begun [see ACS 53, 68, 71, 101, 102, 106 (revised edition of
ACS 26), 107].

It was soon realised that while centralisation within a Department was
an improvement, nothing less than centralisation on a national scale could
be really efficient. At the end of 1943, an approach was therefore made to
Sir EDWARD V. APPLETON, Secretary of the Department of Scientific and
Industrial Research, asking for consideration of the formation of a National
Mathematical Laboratory. Discussions, in which the experience gained by
Admiralty Computing Service played an important part, have now resulted
in the formation of a Mathematics Division of the National Physical Labora-
tory. Staff have been released from Admiralty Computing Service to form a
nucleus for the computational sub-division of the new organisation. It is
anticipated that the computational needs of the Admiralty will be met by
outside organisations and the mathematical needs by an even larger use
of the service of consultants, working under the general direction of the
Director of Physical Research, Admiralty.

289




290 ADMIRALTY COMPUTING SERVICE

Among the consultants employed during the war were Dr. N. ARONSZA)N,
Professor W. G. BICKLEY, Dr. L. J. CoMrIE (Scientific Computing Service,
Ltd.), Professor E. T. Copson, Dr. J. Cossar, Dr. A. ERpELy1, Professor
P. P. EwaLp, Dr. H. KoBERr, Dr. J. MarsHALL, Dr. J. C. P. MILLER,
Professor E. H. NEVILLE.

It is perhaps as well to explain that Admiralty Computing Service started
on a scale severely limited by difficulties of staff recruitment; its main object
in its early stages was to obtain the numerical results required in problems
of war research and to make those results available to the particular estab-
lishment concerned as early as possible. Publication of reports was then a
secondary matter, and, in fact, it has generally been so regarded as far as
the purely computational work is concerned. For this reason, it was not
until the beginning of 1944 that the numbering of Admiralty Computing
Service reports was systematised in the SRE/ACS series. All reports
issued prior to that date, either with an NAO (=Nautical Almanac Office)
serial number or with an SRE/MA (=Headquarters) reference number,
were renumbered in the new series and will be referred to here by those
numbers.

All the reports mentioned below were issued by the Admiralty Compu-
ting Service of the Department of Scientific Research and Experiment (Ad-
miralty), Great Britain; generally the computational reports were prepared
and reproduced by H. M. Nautical Almanac Office, while the mathematical
reports were edited and reproduced at Headquarters.

The following 21 SRE/ACS Reports have already been reviewed in
MTAC under the heading of Recent Mathematical Tables (one under
UMT):

ACS RMT No. p. ACS RMT No. p.
19 262 13 36 65 226 12 446
21 260 13 35 68 206 11 424
22 267 13 39 71 206 11 424
31 260 13 35 82 252 13 31
39 260 13 35 90 203 14 80
46 260 13 35 91 [UMT 41] 13 52
47 334 16 175 93 277 14 70
52 268 13 40 97 333 16 174
53 206 11 424 102 288 14 76
55 260 13 35 108 352 17 215
62 266 13 38

There follows a summary of 19 other items of work (ACS 7, 8, 9, 18, 20,
26, 37, 40, [47], 51, 80, 89, 96, [97], 101, 106, 107, 109, 110, 111, 112) which
appear to have a certain permanent value to the computer and mathe-
matician. It is hoped to arrange for the publication in full of some of the
reports. Suggestions as to those which appear suitable for this treatment will
be appreciated. Details of other work, not conveniently described, apart from
its background, will appear elsewhere.

Copies of the reports are only available for distribution to Government
Departments and similar agencies but arrangements have been made for
copies of some of the reports to be deposited with the Editors where they
may be consulted. A very limited number of photostat copies of the un-
published tables is available for distribution or loan to institutions or indi-
viduals with a special computational requirement.
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7. Summation of Certain Slowly Convergent Series. Stencilled typescript,
on one side of 4 p.; undated but issued January 1943. 20 X 32.5 cm.

This note draws attention to a device which was apparently first applied in computa-
tional work by P. P. EwALD in his work on crystal-structure, Ann. d. Phys., v. 64, 1921, p.
253-287, Gesell. d. Wissen., Gttingen, math.-phys. K., n. s. v. 311, no. 4, 1938, p. 55-64.
The analytical basis of the device is the JacoBr Imaginary Transformation of Theta-func-
tion Theory (see E. T. WHITTAKER & G. N. WATSON, A Course in Modern Analysis, fourth
ed., 1927, p. 475); there is a physical basis, too, which consists in replacing (taking the -
electrostatic analogy) point charges by Gaussian ¢pace-distributions. Applied to the series

S= Zo (n + })~te~®(»+D accuracy comparable with that obtained by summation of 50 terms
L o

of the original series may be obtained by taking a single term of one of the two infinite
series into which S is transformed, and three terms of the other.

8. Mechanical Quadratures. Stencilled typescript, 11 p. 4+ 1 diagram; un-
dated but issued December 1942. 20 X 32.5 cm.

Part [ is an exposition of the method of (Approximate or) Mechanical Quadratures in
which an estimate for Jatf(x)w(x)dx is given as ZA.f(xa) where the x, are the zeros of the
orthogonal polynomials associated with the distribution w(x) in the interval (a, b) and the
A are certain constants, called the Christoffel numbers.

Brief discussions are given of the cases when w(x) = 1, see RMT92,132; w(x) = ¢™,
t = x2, when the polynomials are the Hermite polynomials, see RMT131,250; w(x) = e~
when the polynomials are the Laguerre polynomials, see RMT252; and w(x) = x*~* when
the polynomials are the Sonine polynomials.

Part II applies these methods to a particular case of estimating a probability integral
of the form JSo=f(x)e~dx, ¢ = x2.

A third part is in preparation; this will deal with the two-dimensional case and in it an
account will be given of some recent Russian work,

The most promising of the methods discussed appears to be the Laguerre case and con-
sequently the definitive table of the A,, x., referred to above, see RMT252, was prepared.

9. Table of f(x,y) = (2x)! f i e—=cos0-voostodg  Stencilled typescript,

[}
2 p.; undated but issued April 1943. 20.5 X 33.2 cm.
The function f(x, y) is tabulated for x, y = [0(.25)5; 34D], without differences, with
a reservation that “the tabular values are unlikely to be in error by more than one unit
in the last figure retained.”
The table was computed from the relation
ef(x, y) = evi(x)
where j is regarded as an operator such that
@2n)!
2rrl xr

j(x) = I(x)

where I,(x)is the Bessel function of purely imaginary argument. The BAASMTC values
of 4,(x) = x*I,(x) were used in the computation.

18. Cable Tables. Stencilled typescript, 10 p.; undated, but issued in August
1943. 33.5 X 40.5 cm. With separate introductory text, mimeographed,
2 p. 20.5 X 33.5 cm.
These tables are a re-issue of earlier tables prepared by H. M. Nautical Almanac Office
prior to the formation of Admiralty Computing Service.
The problem is connected with the form of a heavy cable in a uniform stream, but it is
thought that the tables are of more general interest and may have other applications.
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Defining
rc in U
In (6) = " sin dl'/

_ cos U+ pusin® U’
the quantities tabulated are:

dU
v/5 = n{f(6) — 1}, s/g = "fcos é(-?pmn’v

and the difference (s — y)/#, for the ranges: 8 = 0(1°)90°; 4 = .05, .1(.1).5, .4(.2)2(.5)5(1)12,
with 3D in y/g and s/g, but 4D in (s — y)/g for 41° < 6 < 90°.

No differences have been provided and interpolation is not always linear, though
(s — y)/9 behaves smoothly even for small x and 8 near 90°, where both y/g and s/g are
not easily interpolable. It is not expected that the last figure will be in error by more than
one unit, though no great effort was made to ensure end-figure accuracy.

20. Trajectories of a Body Moving with Resistance Proportional to the Square
of the Velocity. Stencilled typescript; 6 p. + 1 p. diagrams. 20.2 X 33 cm.
Tabulations are connected with projectile trajectories when the motion is under gravity,

with a resistance proportional to the square of the velocity.
The functions tabulated are

sec? ydy Y = 0 tan ¥ sec? ydy S = sec? ydy
% F(y) — F(a)' % F(y) — Fla) ' % F(¥) — F(a)'

sec? ydy d as sec

v g9 w0
wNFQ) - F@) T = V[F0) - F)]

where F(0) = sec 8 tan 8 + In (sec 8 + tan 8) = j;' sec? ydy.

In tables I(a) to II(b), 6o = 89°, and since this makes most of the valuesof X, ¥, S, T
negative, the quantities actually tabulated are —X, - ¥, —S, —T, 8. The tabulations are
generally to 3D. No attempt at great accuracy has been made in the calculations. In the
main tables it can be stated that

(i) the maximum error possible is ten units in the last figure retained: this error, if it
occurs at all, will be systematic and will therefore not enter with its full weight.
(ii) errors of more than three units in the last place are unlikely.

Tables have been prepared for @ = — 85°(5°)85° with 6 as independent variable, and
for a = — 90°(5°)—80° with T as independent variable.

Table I(a) : a = — 10°(5°) + 85° 6 — a from 0 to 10°.

Table I(b) : a = 70°(5°)85° 8 — & small, less than 0°.1.

Table II(a): « = — 85°(5°) 4 80°, 0 from —5° (or some larger value depending on «) to
89° for « < — 50° and to 85° for @ > — 45°

Table II(b): a from —85° to 85°, 6 from 85° to 90°.

Table III : & = — 90°(5°) — 80° argument T = 0(.1)1(.2)2.8.

Table IV : an auxiliary table giving F(8) for 8 = [0(0°.1)70°; 4D], and cos® 6F(6) for
0 = [60°(0°.1)90°; 4D].

The'report contains instructions for the use of the tables and indicates the method of
computation.

26, 106. E. T. CopsoN, The Asymptotic Expansion of a Function defined by
a Definite Integral or Contour Integral. Mimeographed, 1943, 45 p. 106.
Second revised ed., 1946, 63 p. 20.2 X 33 cm.

This monograph gives an account of the methods used in the asymptotic evaluation of
integrals. It includes the method of integration by parts, Laplace’s method, Kelvin’s prin-
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ciple of stationary phase, the use of Watson's lemma, method of steepest descent and saddle
point method. Applications are made to the gamma function, incomplete gamma functions,
Bessel functions, scattering of sound waves, Airy integrals, Legendre and Hermite poly-
nomials, and other functions.

In the second edition the section on Airy's integral has been revised in order to bring the
notation in line with that used by the British Association Tables, and an application to a
problem in probability has been added. The Bibliography (with brief notes on the scope of
each item) will be of assistance to those who require further information.

37. J. M. JacksoN, An Electronic Differential Analyser. Mimeographed,
1944. 19 foolscap leaves + 4 plates. Reprinted by the Navy Department,
Washington, D. C., Office of Research and Inventions, July, 1946.

The processes required in a differential analyser, e.g. addition (subtraction), multiplica-
tion, integration, and differentiation, can all be performed by simple electronic circuits.
The chief drawback is that the lower frequencies being differentiated suffer attenuation and
phase shift, and that the process of integration can occur only for a limited time. Both these
troubles can be appreciably relieved by liberal use of negative feed back.

A differential analyser was built on these lines and, within the limits of its accuracy,
about 5%, gave good service. The main advantages, apart from the low initial cost, are the
rapidity of operation, and the simplicity of setting up, each unit, whether adder, multiplier,
or integrator, being simply plugged into the correct position in the chain. The output of the
machine operated a pen and ink recorder. It is felt that a more detailed investigation of the
possibilities of the method should be made in cooperation with experienced electronic
engineers,

40. Rangefinder Performance Computer Stencilled typescript, July 1944, 3 p.
2204 X 33 cm.

This devu,e calculates the mean error and root mean square error made by an operator
being trained in- the use of a mechanism such as a range-finder. It thus reduces greatly the
labor both of selecting trainees according to natural ability and of assessing the value of
their training. :

The true:reading, and that obtained from the operator’s use of his mechanism, are  fed
simultaneously into a dxﬂerentlal gear which rotates a uniselector. The instantaneous error
appears in the uniselector expressed as an integer up to +24. At instants determined
either by a timing device or by the operator himself, this error is transferred to the com-
puting mechanism, which, by uniselectors and relays, adds it to the sum of all previous errors,
and by means of a built-in table of squares, adds its square to the sum of the squares of the
previous efrors. It alse counts the number of errors inserted. These operations require up to
4 seconds; the results, including the sign, are shown on an illuminated display panel. The
machine can accommodate up to 100 errors, or can be set to stop automatically at any

“‘previous number. It can be reset to zero almost instantaneously.
" The calculation is completed either by a hand machine or by inserting the numbers
from the display panel into a suitable network of inductance potentiometers.

[47). Tabulatum of the Functwn flx,y)= f e~ *[ Jo(kx) cosh (ky) —1]dk/sinh k.
Photo offset print of handwriting and machine-printed tables, February
1945. 9 p. + 1 folding diagram. 21 X 34.5 cm. See RMT 334.

The function f(x, y) is the solution to a two-dimensional potential problem, being that
solution in the strip 0 < y < 1 of the differential equation
W 1y &
1Y
dx?  xdx  dy?
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of

9,
which satisfics the conditions a—'; =0ony=0forx 0, _y =(1+x*)%ony=1, and

=)+ () ~o(57)
(ax + 3 ~0 pryripr both near the origin and for large values of x.

The function is tabulated for x = 0(.1)5; y = [0(.1)1; 4D], with second differences in
both the x- and y-directions. There is also a diagram showing the contours in the x, y-plane
for f(x, y) = — 1(.1) + .3, and the values of f(x, y) for x = 0(.2)5; y = 0(.2)1 obtained by
the use of relaxation technique.

Expansion as a series gives:

S, 3) = X [la* + @n — yP)4 + (22 + 25 + 907} — 1/n]
=l

and this was used, in various forms, to obtain values to 6D on the linesx = 0,x = 5,y = 0
and y = 1 and for one or two interior points as a check. Computation for the remaining
interior points at interval .2 in both x and y was performed by applying the technique of
relaxation to solve the simultaneous equations arising from the finite-difference equivalent
of the partial differential equation defining the function. As far as it is known this is the
first application of the relaxation method specifically including in the equations to be solved
the corrections for the effect of higher order differences. Their inclusion allows the use of a
larger interval than would otherwise be permissible. The excellence of the agreement of the
independent calculations and the method of computation suggests that no value is in error
by much more than one unit in the last figure retained.

S1. Table of Angular Quarter Squares. Photostat, July 1944. 11 p. 20 X 25
cm.

This table gives, for the range 0(3')100°, the angular equivalent in degrees and minutes
of the radian measure of the quarter square of the radian measure of the argument. It was
prepared for the Admiralty Compass Observatory for use in analysing compass deviations,

The preparation of the table is trivial and it was actually built up from a constant
second difference on a sexagesimal National accounting machine, the machine being ar-
ranged to print the final copy directly.

80. Probability Charts for Destructive Tests. Sheets mimeagraphed on one
side only, November 1945. 5 p. of introductory text, 4 folding charts.
20.2 X 33 cm.

NMM

Tables are given to 2D of log [ 100C c ] as a function of n for the

range of values N = 50, 100, 200, 400; M = 0(1)10, 12, 15;¢ = 0(1)2; n < §N.
Values for the limiting case N = « are also‘tabulated as a function of n/N.

89. Solution of Integral Equations occurring in an Aerodynamical Problem.
Photo-offset print of handwriting and machine printed tables, July 1945.
17 p. 20.5 X 33 cm.
The actual tables consist of 2 p. only, on which are tabulated:
in Table I, K'(x), G(x), G'(x), S(x), U(x) and W(x) for x = [0(.2)10; 5D];
in Table I, ’'(x), N(x) and f(x) for x = [0(.2)10; SD]. These functions are defined as
follows:

2vZ 1
K’ = — — (1 E\(k) — Fi(k
(x) . Zx\,;_-i?_ {( +x) l( ) l( )’
Gy = 2L Z=F®, G = M_t —— () - RO,
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where E,(k) = ./: " (1 = ¥ sin? ¢)¥dp, and Fi(k) = ﬁ"’ (1 — Esin? ¢)~¥dg are the elliptic

integrals of the second and first kind respectively and &% = x/(2 + x).
From these S, U and W are derived by means of the equations

S@) = K'x) = [T K’ ~ 9)SOMy,  U) = G@x) — [ Glx — 9)S6)dy,

W) = — U = (60)SE) - '@ + [, 6'(x - 5)S)y.
For the functions in Table II,

o) = 22— (a + 2B - R
. . + 2 1 1 ’
vz 1
N = — ——— [(2X? -
(x) . xm l( X + 4x + I)El(k) (Zx + l)Fl(k)}-

and f(x) is defined by the integral equation: f(x) = o'(x) — j; i N(x — ¥)f(y)dy.
The problems from which the twn tahles arise are essentially the following:

(i) To solve the integral equation g(z) = j; : G __(“)*('z 1+ '2 ‘)_ 3  h(0)dt for h(s) in

terms of the general function g(z). The solution is

h(z) = w(z) — j; * S — Hw(t)dt

\7)
where w(s) = - v’(s), and v(s) = _I: g(z)(s — z)~¥dz and so can be obtained by quadrature

for any given function g(z).
(ii) To determine the function f(z) from the equations f(z) = J: ka(z — t)h(t)dt, where

e _ @ty A 2
1 j; ki(z — £)h(t)dt, and ki(x) {x(x+2)l"k’(x) x+ 2

Simple elimination leads to the equation
S G = 0@t = [ ka0dt = (s + DI,

a form identical with the first problem, the general solution of which could be used to
compute f(z).

The main interest in the report lies in the method of numerical solution for the integral
equations of the second kind defining S(z) and f(z). A simple direct method is developed by
replacing the integral by an accurate quadrature. It is also shown that the following explicit
formulae for S(z), U(z) and f(z) may be obtained by the application of the Laplace trans-
formation :

1 @ eut=a du L) eus du
—_— — e — Uz) = —_—
\/2:‘/:’ Ka2(u) + =2Ii2(u) Vu ‘l; K*(u) + =212 (u) u?
eus du

and f(z) = e~-5435:(1,2120 cos .5012z + .1898 sin .5012z) — ﬁmm7 . Here
1 1

K\, I, are the Bessel functions of pure imaginary argument, primes denote derivation with
respect to the argument, %, and the first term in f(z) arises from the fact that Ki'(s) has 2
(and only 2) zeros in the complex plane: z = — .6435 =+ .5012i. These expressions were
used to provide an independent check on the accuracy of the numerical solution, and it is
difficult to conceive a check which is more satisfactory. They do not, however, appear to
be particularly suitable for systematic numerical computation.

This problem has had a certain amount of publicity owing to the disparity between the
original estimate of 300 man-years, made by the Establishment concerned, and the actual
time of 50 hours taken by Admiralty Computing Service.

S(z) =
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96. Computation of an Integral occurring in the Theory of Water Waves.
Photo-offset of handwriting and machine printed tables, September
1945. 6 p. 20.5 X 32 cm.

The theory demands numerical values of
Cw) = [ cos ousech kh do

where o* = gk tanh Rk, for various values of the parameter A, g being a constant. It is readily
seen that a single table of

f) = \/%C(v) =j:cosvysechxdy

will enable C(u) to be calculated quickly and easily for any combination of 4, g and u.
f(v) has accordingly been tabulated for v = [0(.01)5(.1)10; 4D7]; no differences are
given, but first differences are always small.
A short auxiliary table is included of sech x with argument y where y* = x tanh x;
sech x to 4D, with 8% for y = 0(.1)3.5.

[97). Tables of the Incomplete Airy Integral. Photo-offset typescript and ma-
chine printed figures, April 1946. 5 p. of tables (photo reduced machine
figures) and 10 p. of introductory text. 20.8 X 32.6 cm. See RMT 333.

This report contains tables of the integral
1 pr
Flz,y) = = [, cos (st — st

forx = — 2.5(.1) + 4.5; y = [0(.02)1;4D]. No A given, but the table can be interpolated
in the x-direction using second differences; accurate interpolation in the y-direction requires
the use of fourth differences, but the use of second differences only will give rise to a maxi-
mum error of 2 units only. The last figure tabulated should not be in error by more than one
unit, and all the computations have been done in units of the seventh decimal, though two
of these were often lost in the course of the integrations.

The title of the report is obtained by considering the function in the form:

Ft,3) = =5 [T cos (XT = 47T

where ¥ = (3y)!/3 and X = x/Y. It is thus seen that, for the purpose of extending the
tabulation of the complete integral, the present choice of variables is not ideal.

The report contains an account of the methods of computation used and gives the
necessary ascending and asymptotic series. The principal method of solution was the direct
numerical integration in the x-direction of the differential equation satisfied by the function

?F  x 1. s
o T3y F= iy sm»(xr yx?),

A detailed account is given of the application of the National accounting machine to the
integration of second-order differential equations of this type; the method is one which will
have great value for use with automatic digital computing machines.

Special methods had to be developed for use for small values of y, and generally the
function is one of surprising computational difficulty.

101, 107, (109, 110, 1117]. H. KoBER, Dictionary of Conformal Representa-
tions, Parts I-II. Mimeographed on one side of leaves, 1945, 1946.
36 and 48 leaves. 20.2 X 33 cm.

Each page of this dictionary is divided into two columns; that on the left gives diagrams
or formulae relating to z-plane while that on the right gives the corresponding diagrams or
formulae for the w = f(z) plane.
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In Part I the cases of the linear (f(z) = az + b) and bilinear (f(z) = (az + b)/(cz + d))
transformations are discussed. For instance, explicit formulae giving the actual transforma-
tion which carries any two non-intersecting circles into two concentric circles are given.

In Part I1, Algebraic functions and 2* for real values of « are discussed. Included in this
part is a section on JOUKOVSKI'S transformation w = az + b/z and its generalisations.

This dictionary will be completed by the issue of three further parts:

109 Part 111, Exponential Functions and some related Functions,
110 Part IV, Schwarz-Christoffel Transformations,
111 Part V, Higher Transcendental Functions.

112. ALaAN BAXTER (1910-1947), The Fourier Transformer. 1947.

This is a machine of mixed electrical and mechanical design which evaluates the Fourier
transforms C(n) = j:m f(n) cos nx dx, and S(n)= ‘I:o f(n) sin nx dx of a given function
f(x). The integrations are carried out electrically but the selection of the wave-number # is
mechanical. The input function is followed manually and the motion translated into a pro-
portional A.C. voltage (50 c/s) by an inductance potentiometer. A power supply of equal
voltage is derived from a servo-operated Variac transformer. This feeds simultaneously 22
magslip resolvers, each of which multiplies the voltage by the sine and cosine of the partic-
ular angle at which its rotor lies. These voltages derived from the magslip resolvers, propor-
tional to f(x) cos nx and f(x) sin nx, are integrated by modified sub-standard K.W.H. meters.

Each magslip rotates continuously during the transit of the input function, to produce
the appropriate angle nx, the angles being selected by a system of gear boxes. The range of
wave numbers % is from 5 to 128, a figure which can be further increased if the function is
subdivided. One traverse of the function occupies 10 minutes, and produces simultaneously
22 cosine integrals and 21 sine integrals whose wave numbers cover a range of 4:1. The full
range from 5 to 128 is covered, if required, by repeated following of the input function.

Additional dispositions of the gear boxes enable the density of wave-numbers in any
particular range to be increased at first fourfold, and then a further tenfold, allowing for
close investigation of any particularly interesting regions of the transform. It is hoped that
the errors in the transform will be less than 1 per cent of its peak value.

Joun TobD

Univ. of London, King’s College
D. H. SADLER

H. M. Nautical Almanac Office

! Other aspects of the work of Admiralty Computing Service are described in an article
by the present authors, in Nature, v. 157, May 4, 1946, p. 571-573;see MTAC, v. 2, p. 188.
See also A. ERDELYI and JoHN Topb, Nature, v. 158, 1946, p. 690; AGS 115.

RECENT MATHEMATICAL TABLES

Seven reviews of RMT are to be found in our introductory article
“Admiralty Computing Service,” 7, 9, 18, 20, 80, 89, 96.

400[C).—JoseF KROVAK, Achtstellige Logarithmische Tafel der Zahlen.
Osmimistné Logaritmické Tabulky Cisel. Prague, Geographic Institute of
the Minister of the Interior, 1940. iv, 26 p. 14.6 X 21.1 cm.

This little pamphlet is divided into two parts. In the first part (p. 2-14) the arguments
are the logarithmic mantissae from 0000 to 6389 corresponding to the numbers 10 000 000
to 43 541 160. In the second part (p. 15-26) are given the mantissae of log N, for
N = 4340(1)10009. In columns headed d, of each part, are the greatest and least differences
which arise in successive lines. Examples in German and Czechish illustrate the interpola-
tion process for getting the 8-figure logarithm of any number.




