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results in output pulses of different amplitudes, it is possible, by mixing a

constant-amplitude negative pulse in the video amplifier, to obtain as a

final result a positive pulse for a positive element and a negative pulse for a

negative element of the target.

A developmental model of the Memory Tube intended for computer use

is shown in Fig. 3. The general shape of the tube, the relative position of the

guns and screen-and-target structure can be seen. Since the computer Mem-

ory Tube is still in the development stage, it is expected that many improve-

ments in the design of both the tube and the associated circuits will be made

before a completely satisfactory performance is achieved. It is hoped that the

above brief account of the present state of development will stimulate work-

ers in this field to explore further the potentialities of the memory device

which has been made available to them.

Andrew V. Haeff
Naval Research Laboratory
Washington, D. C.

1 A. V. Haeff, "A memory tube," Electronics, Sept. 1947, p. 80-83.

The Logical Design of the Raytheon
Computer

The design to be described in what follows is that of a high-speed digital

computer for general scientific work. It is intended to meet general specifica-

tions issued by the National Bureau of Standards, for whom most of the

work was done with the support of the Office of Naval Research.

The final design incorporates mercury delay lines as an internal

memory device and magnetic tape as an external storage medium. These

features of the design, together with the NBS specifications, dictated most

of the machine parameters.

The basic logical units of the computer are: (1) internal memory, (2)

external memory, (3) arithmetic unit, (4) central control, which constitute

what might be called the high speed part of the machine, and two auxiliary

units : (5) problem preparation unit, (6) printer.

The Memory and the Representation of Numbers and Orders.—The com-

puter handles several different kinds of numbers. In standard or "normal"

operation, numbers are stored to a precision of 35 binary digits and with a

fixed binary point. The normal precision of the basic arithmetic operation is

also 35 digits. Numbers of 70 binary digits—i.e. numbers of double-pre-

cision—can be stored and manipulated as pairs of standard numbers.

Floating-point numbers can also be handled as pairs of standard numbers,

one of these being a number between \ and J, and the other being an expo-

nent on 2. Since decimal-to-binary and binary-to-decimal conversions are

performed in the arithmetic unit, instead of in auxiliary equipment, decimal

numbers must also be stored in the internal memory. These are stored in the

binary-coded decimal notation to a normal precision of 8 decimal digits.

Decimal numbers of double-precision can be handled as two normal numbers.

Not only numbers but coded instructions (which will henceforth be

called orders) as well are stored in the internal memory. An order contains

enough information to specify a complete arithmetic operation, including
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all the required selections in the memory. Most orders consist of four address

codes and one operation code. For these orders, two of the addresses specify

the location of the operands in the memory, the third specifies where the

result is to be sent, and the fourth where the next order is to be found. In

the case of a few operations, the corresponding order does not require the

full complement of four addresses. Addresses and operation codes are binary

numbers of 13 and 6 binary digits respectively. Because of the presence of a

fourth address, there is no preassigned sequence in which orders are normally

selected from the memory.

The internal memory stores words, which may represent either numbers

or orders. A number-word contains one standard number of 35 binary

digits and an algebraic sign, together with a check number to be described

subsequently. An order is stored by means of two order-words, one contain-

ing two addresses and a check number, and the other two addresses, an

operation code, and a check number. The complete length of any word is

45 pulse positions. These are allocated as shown in Fig. 4. The total capac-

ity of the memory can be changed in increments of 1024 words without

any changes being made in other units of the calculator, except in the amount

of selection equipment included in the central control unit.

The machine will be built to have a memory capacity of 1024 words with

design provisions for the ready extension of this capacity to 4096 words.

Since the machine design has been arranged to conform with this extended

capacity, the ensuing discussion assumes a 4096-word memory.

Three kinds of operations are performed in the internal memory: the

writing of new words in the memory, the reading from the memory of in-

formation previously written, and the erasure of information so that the

same space in the memory can be used to store different words at different

times. The logical organization of the machine is such that erasure always

occurs automatically just before a word is transferred to the memory.

In the four-address order described above (except in the case of a few special

operations), addresses nos. 1, 2 and 4 control transfers of words from the

memory, and address no. 3 controls a transfer to the memory preceded by

an erasure. Words are serially circulated in the memory, the successive digits

of a word being all available at the same place, but at successive times. All

transfers of words into and out of the memory are therefore done serially ;

the pulses which represent a word travel in succession along a single

"channel."
Each word contains 45 pulse positions, and the pulse repetition rate is

4 megacycles per second. Hence, the duration of one word is 11.25 micro-

seconds; since there are 32 words stored in each line, a complete memory

cycle has a duration of 360 microseconds. The time required to select a word

in the memory, and to transfer it to the arithmetic unit varies from 2 to 33

word durations.

The external memory is used to supplement the internal memory. Four

magnetic-tape units are provided in the design, each capable of storing as

many as 105 words. Thus, nearly a half million different words can be auto-

matically processed by the machine without any human intervention being

required. The different words stored in the external memory have vastly

different accessibility times. Any tape can be scanned at the rate of about

500 words per second ; hence, in the most unfavorable case it may take as
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long as 200 seconds to read a given word out of the external memory. The

most efficient use of the external memory occurs when the recorded data

can be used in the sequence in which they appear on the tape. If the data

must be used in an order different from that in which they are recorded, a

mass rearrangement prior to reading might be performed. If this is impos-

sible, the effective computational speed of the machine would conceivably

be reduced by a factor as great as 104.

Not only does the external memory supplement the internal memory,

but it also is used to introduce initial data—both numbers and orders—into

the calculator. These initial data are recorded manually on magnetic tape

by means of the problem preparation unit. When the tape so prepared has

been manually placed on a magnetic-tape unit, the recorded data are auto-

matically available to the machine.

The external memory also serves as a link between the machine and the

output printers. Results obtained by the computer are recorded by means of

one of the four magnetic-tape units. The tape containing the data is then

manually placed on one of the two automatic printing units.

Since the decimal-binary and binary-decimal conversions are performed

in the arithmetic unit, original input and final output numbers handled by

the external memory are in the binary-coded decimal notation; all other

numbers and all orders are in the binary notation.

Words are recorded on the tape in groups of 32, each group having asso-

ciated with it a tag for identification purposes. Reading from the tape is also

done in blocks of 32. Words are transferred directly between the external

memory and the arithmetic unit only and not between the external memory

and the internal memory.

Associated with each tape unit are two 32-word delay lines, or reservoirs,

which are used as buffers between the main electronic part of the machine

and the tape. In recording, the words to be recorded are all sent to one

reservoir until it is filled ; at this point they are sent to the second reservoir

until that in turn is filled, after which they are once again transmitted to

the first. As soon as a reservoir is filled, it is emptied automatically onto the

tape. Thus, computation and recording can proceed simultaneously. As the

machine computes, the results are sent to one reservoir ; at the same time,

the contents of the other reservoir (computed previously by the machine)

are being recorded on the tape. If the computer generates words faster than

they can be recorded, the computation is halted from time to time to allow

the recording to keep pace; when the opposite condition prevails, the re-

cording is halted periodically. In reading from the tape, the use of the reser-

voirs is essentially the same as that described above for recording, except

that the flow of words is in the opposite direction—from tape to reservoir to

arithmetic unit.

Facilities are provided for random hunting on each tape. The process of

hunting consists in looking for a block with a given tag, and then in reading

that block, or under certain circumstances that block and the next, into the

reservoirs. Words are recorded on the tape in four parallel channels.

All storage of words in both the internal and external memories, and all

transfers of words are checked by means of a weighted count, i.e., a weighted

sum of the digits of the word (including the algebraic sign if the word is a

number-word). This weighted count is stored with the number or half-order



290 LOGICAL DESIGN OF RAYTHEON COMPUTER

as part of the word and is called the transfer weighted count. The weights

chosen for the sum are the numbers 1, 2, 4, 1, 2, 4, 1, 2, 4, etc., which are

assigned to the successive digital positions from right to left. This weighted

sum is computed modulo 16 and is then modified by the addition of 1 ; thus,

a number and its weighted count cannot both be zero simultaneously. With

this modification, a null word is not a valid word, and the complete failure

of a gate or other device controlling the entire transfer channel will be

detected. Since the sum is computed modulo 16, only four digital positions

instead of seven are required to represent the weighted count.

Arithmetic Unit.—The arithmetic unit is the only unit in the machine

capable of generating new numbers or new orders. All of the other machine

units have a passive role in the actual computation process, being used

merely to introduce operands into the arithmetic unit and to call for the

proper arithmetic processes.

Unlike the internal and external memories, the arithmetic unit uses a

parallel representation of words, the various digits of the word being stored

in separate devices (flip-flops). This permits a considerably higher computing

speed than could be obtained in a serial unit. Transfers of words between the

memory and the arithmetic unit are accompanied by serial-to-parallel or

parallel-to-serial conversions. Arithmetic operations can be performed on

either numbers or orders. Built-in operations on numbers include, first,

the basic arithmetic operations of addition, subtraction, multiplication, and

division; second, transfers of numbers from one memory position to another

with at most a change in the algebraic sign of the number; third, number

shifts ; and fourth, extractions of any preassigned set of digits from a number.

Built-in operations on orders (strictly speaking on order-words, i.e., halves

of orders) include addition, subtraction, and transfer.

The general way in which these operations are performed can be de-

scribed in terms of the three registers, or number-storing devices, of which

the arithmetic unit is composed. Denote these by the letters A, B, and C.

Of the three registers, only B has provision for addition in the form of an

accumulator. The number standing in A can be added to that in B, and the

sum will appear in B. Numbers stored in registers A, B, and C will be

denoted by Xa, Xb, and Xc-
In the process of addition involving standard numbers or order-words,

the augend is first read from the memory to B, and the addend from the

memory to A. Then the addition Xa + XB is performed, after which the

sum can be read out of B. Negative numbers are stored in the memory as

absolute values, with the algebraic sign appended, instead of their being

stored as complements. Arithmetic subtraction, however, can only be per-

formed by taking the complement of the subtrahend and adding it to the

minuend. Hence, under certain circumstances the augend or the addend

must be complemented before the addition takes place, and the sum may

have to be complemented before it is sent to the memory. The complement

that is used is the complement of 2 — 2-35; it is the original number sub-

tracted from a number all of whose digits are unity. Thus, the complement is

found merely by replacing all 0's by l's and l's by 0's. The use of this type

of complement requires carry from the extreme left-hand column to the

extreme right-hand column under some circumstances. The process of sub-

traction is similar to that of addition as described above.
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In the multiplication of standard numbers, the multiplicand is first

read to A and the multiplier to C. Each step of the multiplication then con-

sists of the following: if the extreme right-hand digit of Xc is unity, Xa is

added to Xb ; if that digit is zero, null is added to Xb ; then Xb (the partial
product) is shifted one column to the right, as is also Xc. The digital columns

of Xb which are shifted off the right end of the B register are read into the

C register to take the place of the digits of Xc as they are shifted to the right.

Thus, at the end of the multiplication, the complete 70-digit product stands

in registers B and C. Either 35-digit section of this product, or both sections,

can be utilized for subsequent calculation.

In the division of standard numbers, the dividend is transferred to

register B, the divisor to register A, and the quotient is formed in register C.

The complement of the number in A is first taken. Each step of the division

then proceeds as follows: The complement of the divisor is added to Xb.

If the sum is positive, unity is added into the right-hand digital position of

register C. If the sum is negative, null is added into C, and the complement

of the number in A is taken (restoring Xa to its original form). The divisor

is then added into B. The complement of the number in A is recomputed.

Finally, the remainder in B is shifted one column to the left, as is also the

quotient in C. At the end of the division process, both the quotient and the
remainder are available.

The operations of addition and subtraction give exact results, and hence

require no round-off. If the low-order part of a product is discarded, how-

ever, the resulting half-product will generally be inexact. If no compensation

were made for the discarded portion, products would be subjected to a mean

bias of about one-half unit in the last place retained, i.e., a bias of %-2~u.

The root-mean-square error would be about (l/V3)-2~36. The occurrence of

such a large bias is a particularly serious matter, since repetitive multiplica-

tion would lead to excessive resultant values of bias and r.m.s. error. The

bias may be reduced by a factor of about 2~35, and the r.m.s. error by a

factor of 5 if 5-2-36 is added to the complete 70-digit product before the
right-hand 35 digits are discarded. The use of the above round-off process is

optional, multiplication codes being provided for both a rounded and an

unrounded product.

The operation of division may also produce an inexact result. If, after

35 digits of the quotient are obtained, the division process is terminated,

there is usually a remainder. This is positive (considering only the absolute

values of the divisor and the dividend). Merely neglecting the remainder

would result in a bias and an r.m.s. error of § • 2~35 and l/v3- 2~36 respectively.

It is not convenient to add |-2~36 to the quotient to reduce the magnitude

of these quantities, since register C, which stores the quotient, is not pro-

vided with facilities for addition. Hence, the alternative scheme of merely

replacing the right-hand quotient digit by 1 is used. This greatly reduces the

bias, but does not change the r.m.s. error.

So far, only arithmetic operations on standard numbers have been

described, but double-precision and floating-point operations can be per-

formed also. These are not built-in operations, but are compounded of

standard operations which are in some cases slightly modified.

Consider the addition of two double-precision numbers. Each double-

precision number is stored as two number-words, it being understood that
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the number in one of the words is multiplied by 2~35. In adding Xi + X2- 2-35
and Yi + F2-2-35, two ordinary additions are performed. First X2 and F2

are added, and the sum is left in the arithmetic unit, having been trans-

ferred from register B to C. There may, however, be a carry digit in the units

column of X2 + F2; this is transferred to the lowest order column of B.

Then Xi and Fi are added into register B. It is now necessary only to com-

plete certain carries in order to obtain the double-precision sum. The carries

in question occur whenever it is necessary to carry from the extreme left-

hand digit of the 70-digit sum to the extreme right-hand digit. (As previously

mentioned, such a carry is sometimes required because of the scheme of

complementing used.) In order to complete these carries it is necessary first

to interchange XB and Xc, perform certain of the carries, and then inter-

change them again, performing the remainder. Double-precision subtraction

is performed similarly.

In the multiplication of two double-precision numbers, Xi-f-X2-2~36

and Yi + F2-2~35, the products X1F1, XiF2, and X2Fi are computed, the

first being kept as a double-precision number. These products are then

added together by means of double-precision addition.

In double-precision division, the reciprocal of the divisor is first obtained

to 35 places by means of a standard division. It is then obtained to 70 places

by means of an iteration formula. Note that double-precision operations

must be used here. Finally, the double-precision reciprocal is multiplied by

the double-precision dividend to obtain the result.

The floating-point operations comprise a second type of nonstandard

arithmetic operation. These processes deal with numbers X of the form

Xo-2p where \ < Xo < f and P is an integer. X is stored in two words,

one containing X0, and the other P-k, where k = 2~36. As illustrations of

floating-point operations of the proposed calculator, addition and multiplica-

tion will be discussed.
To add the two numbers X = X0-2pand Y = Y0 ■ 2 « to obtain Z = Z0-2R,

where } < Z0 < f, the machine must perform these processes: (1) Compare

Pk and Ok, and compute —\Pk — Qk\. This is done by means of a normal

branch. (2) If Pk > Qk, (a) use a controlled shift operation to obtain

Ya' = F0-2-|/,-e|. (b) Then add X0 and F0' by means of a special addition,

viz., addition (floating). At the end of this addition the quantities Z0 and Sk

have been computed, where X0 + Y0' = Z0-2S and | < Z0 < 5. (c) Com-
pute Rk = Pk + Sk by ordinary addition. (3) If Pk < Qk, (a) use a con-
trolled-shift operation to obtain X0' = X0-2-|p-01. (b) Then add X0' and

Ya by means of addition (floating) ; at the end of this addition the sum stands

in the form Z0 • 2s, where \ < Za < 5. (c) Compute Rk = Qk + Sk by ordi-

nary addition.
The floating-point multiplication of X and Y to obtain Z is performed as

follows: (1) Use the multiplication (floating) operation to compute Z0 and

Sk, where Z0- 2s = X„- F0 and \ < Z0 < §. (2) Compute Tk = Pk + Qk by
ordinary addition. (3) Compute Rk = Sk + Tk by ordinary addition.

Several operations other than the four basic operations of arithmetic can

be performed on numbers or orders. Transfers of numbers or orders involve

the arithmetic unit only in an incidental manner. In the case of numbers,

the algebraic sign can be changed during the transfer. Thus, if X is the

number extracted from the memory, and Z is the number returned to the
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memory, any one of four relationships can hold between X and Z : Z = X,

Z = \X\, Z = — \X\, Z = YX/1 Y\. In the last case, F is a control number
which is used to govern the sign of Z. (As an application of the fourth type

of transfer consider the computation of sin X for —A < X < A using only

a table of sin X for 0 < X < A. Compute sin | X |, and then sin X =

Xsin |X|/|X|).
Three types of shift operations are provided : (1) Shift factor (normal)—

The nonzero number X is given in standard form, viz., 2-36 < |X| < 1. Xo

and P-2~35 are obtained as two standard numbers such that J < X0 < §,

and P is an integer. (This is useful in computing logarithms, and in converting

numbers from standard to floating-point form.) (2) Shift factor (square

root).—-The non-zero number X is given in standard form. Xo and P-2~35 are

obtained as two standard numbers such that | < Xo < 1, and P is an even

integer. (This is useful in computing square roots.) (3) Controlled shift.—

Two standard numbers X0 and P-2~3S are given. X = X0- 2P is obtained as a

standard number. This operation is the inverse of (1). (It is involved in com-

puting square roots and in converting numbers from the floating-point to

the standard form.)
The extraction of digits from a number X is accomplished by utilizing

a preassigned control number F containing a 1 in every digital position in

which the extraction is to be performed. The result of extraction is then a

number Z containing a 1 only in each column in which both X and Y

contain a 1.

Operations on order-words include addition, subtraction, and transfer,

all of which are performed on order-words exactly as on numbers; in fact,

the arithmetic unit does not distinguish between order-words and number-

words. Other arithmetic operations on order-words are not excluded, but

would probably serve no useful purpose. It may not be quite obvious why

one wishes to perform additions or subtractions involving orders. This type

of operation is useful under two conditions. First, assume that it is not

possible to specify one of the addresses in a particular order in advance,

because the address depends upon a partial result obtained previously in the

calculation. It is necessary, then, to be able to insert the address by addition

as soon as it is known. Second, it is often advisable to use one order repeat-

edly for different operations which may require the insertion of different

addresses. Using one order many times instead of many different orders

conserves space in the internal memory which may be needed for other

purposes. The coded instructions for a matrix multiplication, for example,

embody but a single multiplication order. The addresses of the multiplica-

tion order are modified in accordance with the memory locations which

contain the elements of the matrices. Using this scheme, the entire multipli-

cation of a matrix of n rows and m columns by a matrix of m rows and p

columns, requires only 16 orders, regardless of the size of the matrices.

The branch is one of the most useful of all operations. It permits the

machine to select alternative computing routines. Normally the fourth

address of each order specifies the location in the memory in which the next

order is to be found. The branch (normal), however, selects for the address

of the next order either the third or the fourth address, depending on the

sign of a difference X — F. If X — Y > 0, the third address is chosen,

otherwise the fourth. An example of the utility of the branch is manifest in
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the floating-point operations described above, where there are many alter-

native computing routines needed. A second kind of branch is available in

equality sensing. Here X = Y selects the third address, and X ^ Y, the

fourth. In either type of branch operation, the quantity — | X — Y\ is avail-

able and can be read out subsequently if needed.

Arithmetic operations are checked by means of the arithmetic weighted

count. This is a check number, associated with each operand and each

result, and defined as the weighted sum of the digits of the number. The

assigned weights are 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, etc. Note that these weights
differ from those assigned to the transfer weighted count described earlier.

The algebraic sign of a number is not included in this weighted count since

signs are checked by another method.

These counts are used to check the basic operations1 X -f- Y = Z,

XY = Z, and X/F = Z + R/Yby means of the identities:

(\ZC - (Xc + Yc)| + 31)c = 31        (addition)

(| (XeYc)c - Zc\ + 31)„ = 31        (multiplication)

(\(YcZc)e + Rc- Xc\ + 3i)c m 31        (division).

In the above identities, the subscript c indicates the arithmetic weighted

count of the quantity to which it is affixed. In the last identity, R is the

remainder.

To illustrate how the above relations are used by the machine, consider

the addition check as an example. The sum Z = X + F is computed as

described previously. Next Xc, Yc, and Zc are computed by means of an

auxiliary arithmetic unit, the weighted count is taken, and the presence of 31

is determined by sensing.

Central Control.—The central control makes use of orders extracted from

the memory to govern the machine. It contains facilities for making selec-

tions in the internal memory in accordance with addresses; for initiating

either reading from the memory or writing into it, depending upon the

position of the address in the order ; and for initiating the proper arithmetic

process as dictated by the operation code.

The operation of the machine is partly synchronous and partly asyn-

chronous. The internal memory is completely synchronous, all pulses being

timed from a central clock. The operations in the arithmetic unit are largely

asynchronous. A complete machine cycle—viz., the time required to execute

one complete order—must be a multiple of the memory word-cycle time of

45-J = 11.25 microseconds. Memory selections and arithmetic operations

are allocated only as much time as they actually require, to within one word-

time ; unnecessary memory selections are avoided. Thus, if the result of one

arithmetic process is to be used solely as an operand in the next, it is not

returned to the memory at all. Because of this so-called variable-cycle opera-

tion, certain arrangements of numbers and orders in the memory have

distinct advantages for any given problem. Considerations of efficiency and

logical planning dictate that, whenever it can be reasonably arranged, the

result of an operation should be used as an operand in the succeeding opera-

tion; such forethought will often lead to a substantial reduction in com-

puting time.
The nature of the central control can best be understood by reference

to a list of the operations which it performs during a complete machine
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cycle. These are :

(1) The first operand is selected under control of the first address.

(2) The line and word locations of the first operand in the internal memory

are checked.
(3) The second operand is selected under control of the second address.

(4) Line and word locations of the second operand are checked.

(5) Transfer count check of the first order-word is made.

(6) Operational code is selected.

(7) Check-back from arithmetic unit is made to insure correct operation

selection.
(8) End of arithmetic operation signals selection of memory position for

result.
(9) Line and word locations of the position about to receive the result are

checked.
(10) Selection of the new set of order-words is begun.

(11) The line and word locations of the new order-words are checked.

(12) Transfer count check of the second (present) order-word is made.

As explained earlier, all four of the addresses may not necessarily be

present in an order; consequently, some of the above operations may be

omitted.
The Problem Preparation Unit and the Printer: The problem preparation

unit is used for the manual recording of problem input data on a magnetic

tape by means of a keyboard. Either decimal numbers or binary numbers

can be recorded on the tape. Ordinary decimal numbers set into the key-

board are recorded as binary-coded decimal numbers on the tape. Binary

numbers are set into the keyboard in the octal (radix 8) notation. In this

latter notation, each digital position corresponds to three binary digits.

It can be seen that the conversions octal-binary and binary-octal are very

elementary. The octal system is to be preferred to the binary since in the

former notation only a third as many digits are required to represent a

number.
All of the data which are recorded on the tape can be printed by means

of an input page printer associated with the problem preparation unit.

Thus a permanent, visually acceptable record is obtained of the information

which is being introduced into the machine. The unit contains a device for

generating transfer weighted counts since these must also be recorded on

the magnetic tape.
Output numerical data recorded on magnetic tape by the machine are

sent to either of two output printers. These data are normally in decimal

form, though binary numbers could also be printed (actually in the octal

notation rather than binary). Standard page printers, operating at speeds in

excess of seven characters per second, can conveniently be used.

R. M. Bloch, R. V. D. Campbell & M. Ellis

The Raytheon Manufacturing Co.
Waltham, Mass.

1 Subtraction, which is in reality nothing more than an addition after appropriate
complementing, is checked by means of the addition identity; the complementing process is
independently checked.


