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Coding of a Laplace Boundary Value Problem

for the UNIVAG

General Explanation of the UNI VAC System.—The UN I VAC l (Univer-
sal Automatic Computer) system includes a high-speed electronic digital

computer and certain auxiliary devices. This system, which deals with

numerical data in decimal form, and which also can handle alphabetic

characters, has been designed as a general-purpose tool for scientific and

commercial use. A salient characteristic of the system is its flexibility. In

its design, particular attention was given to the needs of the Census Bureau,

where sorting and collating of information play a predominant role ; and a

thorough investigation has demonstrated the suitability of the system for

such applications.2 However, the UN I VAC system is not limited to sta-

tistical applications and will be useful in performing complicated numerical

computations underlying a vast body of scientific research. It is the pur-

pose of this paper to give an example of the application of this system to the

solution of the type of problem just mentioned.

All information to be used by the UNIVAC, which is the central com-

puting unit of the system, is first recorded on magnetic tape. Such tape is

prepared on a Unityper, which resembles a standard typewriter. One or

more tapes are prepared; one usually contains instructions—another may

carry numerical data peculiar to the functions needed in the course of the

work. All tapes to be used in a problem are then put on input-output readers

controlled by the UNIVAC. Some of the tapes are used to record output

data ; others may be used for temporary storage of data needed at various

intermediate steps of the calculations. Recording of new data on a tape

automatically erases any previous record in the interval of the tape being

used.
When a problem is completed, either the final results are printed on a

directly-connected typewriter or they are put on one or more of the tapes.

The directly-connected typewriter is usually used for results comprising a

very small amount of data. If the results are on tapes, they are inserted into

a Uniprinter. The Uniprinter prints the results while another problem is

being solved on the UNIVAC. Proper instructions are inserted in the output

tapes to control the Uniprinter for tabs, decimal points, spaces, printing of

alphabetic headings, etc. With this feature, the results can be arranged in

almost any desired form.

The internal memory of the UNIVAC contains 1000 memory locations

numbered from 0000 to 0999. Each memory location accommodates 12D

digits. A memory location is usually filled by a signed 11-digit number or

two instructions. An instruction is usually a letter (which occupies two digit

spaces) followed by four digits, designating the memory location, e.g.,

B0101. A 12-digit group is referred to as a "word." When information is

read from a memory location "m," this information still remains in "m"

until new information is sent for replacing the old.

The tape record is partitioned into fixed lengths called "blocks," each

of which contains 60 words. The first block is read into the first 60 memory

locations in .072 second when a start button is pressed. Then the computer
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automatically goes to memory location 0000 for its first instruction. After

the first instruction is executed, the next instruction comes from the suc-

ceeding memory location, unless a transfer instruction is given. Such a

transfer interrupts this sequence and causes the next instruction to be drawn

from a new memory location designated by the transfer command. There-

after instructions are taken in sequence from successive locations until a

new transfer is encountered.

All arithmetic operations are carried out in the Accumulator, A, of the

UNIVAC and the associated registers and circuits. It should be noted that

when a word is read into one of these associated registers, the previous

contents of that register are erased. An abbreviated list from the UNIVAC

instruction code,1 including the description of only those instructions which

are to be used in the solution of the Laplace boundary value problem treated

later in this paper is appended below. In this list of instructions, m is a

number designating a memory location; letters preceding m are operation

symbols. In the description of each instruction, letters denote registers of

the UNIVAC. The contents of a register are indicated by parentheses.

Thus (m) signifies "word stored in m," (L) signifies "word stored in L," etc.

The key mnemonic words are italicized in the description of the operation.

In denoting the different registers, A signifies accumulator. When

cleared, this register contains all decimal zeros, even in the sign position.

It has capacity for an 11-digit number and sign; a negative number is

registered in it in the absolute-value form with a negative sign. The X

register is a 60-pulse delay line with an extra 5-pulse delay which can be

switched in for shifting purposes. It receives numbers which are to be sent

to the accumulator and provides for the checking of the sign to effect alge-

braic addition of the number to the contents of the accumulator. The L regis-

ter is a one-word register which contains the multiplicand during the multi-

plication process. It also holds the word for the T and Q comparison proc-

esses. The I register holds one block of words which has been read in from

magnetic tape.

The above-mentioned list of instructions to be used in the subsequent

discussion is as follows :

Instruction Explanation of Instruction

Am Add (m) to (A), result in A; (m) also left in X.

Bm Clear (A), then put (m) in A; (m) also left in X.

Cm Put (A) in m, clear A.

Hm Put (A) in m without clearing A (i.e., hold (A) in A).

Km Put (A) in L, clear A, disregard m.

Lm Put (m) in L; (m) also left in X.

Mm Multiply (m) and (L), rounding off the product to 11 digits and adding

it to (A), result in A.

Qm Transfer control to m if (A) = (L).

Sm Subtract (m) from (A), result in A; — (m) also left in X.

Tm Test to see if (A) is greater than (L); if so, transfer control to m.

Urn Unconditional transfer of control to m.

Xm Add (X) to (A), result in A, disregard m; (X) unaltered.

00m Pass on to next order without doing any arithmetic operation ; dis-

regard m.
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Instruction Explanation of Instruction

Shift Orders

Anm Shift all digits of A, including the sign, n digits to the left, dropping the n

left-hand digits ; n ranges from 0 to 9 ; disregard m.

. nm Shift all digits of A, including the sign, n digits to the right, dropping the

n right-hand digits; disregard m.

Tape Orders for 1 to 9 Tapes

lnm Read one block of data (60 words) from tape n and store in I, tape running

in forward direction ; disregard m.

3nm Transfer data (60 words) previously stored in I to 60 consecutive memory

locations, beginning with m, where m is an integral multiple of 20; then

read one block of data (60 words) from tape n and store in I, tape running

in a forward direction.

5nm Write 60 consecutive words, starting with m, where m is an integral

multiple of 20, on tape n, tape moving in a forward direction. •

4.m Stop machine operations and produce a signal; disregard m.

Underlying Mathematical Considerations in the Numerical Solution of a

Laplace Boundary Value Problem.—For purposes of simplicity, a two-

dimensional potential problem will be considered. The iterative method

used here for the solution of the plane potential problem is a finite-difference

method originally proposed by Liebmann.3 The UNIVAC is well adapted
for the solution of all sorts of problems where iterative procedures are

effective, and not only the plane potential problem, but many others of a

similar nature are easily dealt with. When an automatic procedure has

once been set up for a single equation, any number of iterations may be

made according to the same routine ; and, although the computing time will

increase in direct proportion to the number of iterations to a good approxi-

mation, no further human effort is required. An important simplification in

the instructions for a single iterative cycle can be made because of the fact

that for all interior points of the lattice exactly the same sort of operations

must be carried out. Consequently, after the coding applicable to one lattice

point has been worked out, this coding may be automatically altered within

the computer so as to apply to the next lattice point. The necessary altera-

tions are systematic, and consequently the routine which accomplishes such

alterations can easily be generalized so that all of the required alterations

throughout the iterative cycle are accomplished properly.

The Laplace equation,

a2 W/dx* + d2W/dy2 = 0,

together with the values of W(x, y) on a closed boundary in the xy plane,

determines the function W at all points on the interior of the boundary.

Here it will be assumed that the boundary is a simple rectangle with sides

parallel to the x and y coordinate axes. The finite-difference solution deals

only with values of W at discrete and equally spaced points, which will be

called lattice points. These lattice points are, for convenience, serially

numbered in a systematic way. Let the serial number or index be called j.

Then the rectangular array of points may be arranged in q columns and p
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rows. In terms of p and q, the index j for each lattice point can be exhibited

in the following array:

1 2

3+1 q+2

(P-I)q+1 (p-l)q + 2

q - 1 q
2q — 1 2q

Pa - 1 Pi

The lattice points lying on the boundary are included in this array and ap-

pear in the first and last rows and the first and last columns. At these points

the value of the function W is specified in advance. Actually, no use is made

in the computations of the corner points (j = 1, q, (p — l)q + 1, and pq),

but these points are included in the array so as not to disturb the systematic

character of the enumeration.

The value of the finite-difference solution W at any point will be de-

noted by W(j). The value of W(j) at an interior point is related to the

values at the adjacent points by the following equation:

W(j) = \{W(j - 1) + W(j + 1) + W(j -q) + W(j + «)].

The functional values in the above equation are those which exactly satisfy

the difference equation which is to be solved in lieu of the Laplace differen-

tial equation; they provide an approximation to the solution of the original

equation. By writing out the (p — 2)(q — 2) linear equations derived in

this way for all interior points and solving these by any appropriate method,

one could, of course, obtain the solution in a direct manner, but with a great

deal of labor. In the Liebmann process, successive approximations to the

correct solutions are obtained by a suitable modification of the above equa-

tion. Let W(j)i be the ith approximation to W(j). Then the next approxi-

mation is obtained from the equation :

W(j)i+1 = KW(j - 1); + W(j + 1), + W(j - q)i + W(j + q)i].

Actually, it is more convenient in forming the next approximation for any

given point to utilize the best approximation so far obtained for the neigh-

boring points ; therefore the following equation is the one actually used :

W(j)i+1 = KW(j - l)i+1 + W(j + Di + W(j - q)i+l + W(j + $)<]-

It will be noted that in this latter equation use is made of the (i + l)th

approximation, which is already available for points (j — 1) and (j — q).

This assumes that the computations are carried out so as to proceed system-

atically from the lowest value of j to the highest throughout the lattice.

In most cases, somewhat quicker convergence will be found when this

formula is used than if the preceding formula is used.

Any desired test of convergence may be used, since the UNIVAC is

capable of carrying out any desired comparison process. The test which has

been incorporated in the program presented here is merely an example of

one such method. At each point and for each iteration, the absolute value

\W(j)i+i- W(J)i\ = I «I
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is formed. The sum of these absolute values over all interior points for a

single iteration is used in testing convergence. Iteration is continued until

this sum is diminished to some satisfactory preassigned value known as the

maximum allowable error. (This maximum allowable error should not be

taken as zero, since it is possible that because of round-off errors there will

be no iterative cycle for which the above sum will reduce to zero ; but in-

stead this sum will ultimately vary in the periodic manner with a small

amplitude.)
If the higher differences of the function W are not negligible, then the

solution to the difference equation will differ appreciably from the solution

to Laplace's differential equation. The discrepancy between the two

depends, of course, on the fineness of the lattice. Having the solution to the

difference equation, one may cause the computer to calculate the appro-

priate differences in order to estimate whether a finer lattice should be used.

Another possible procedure is known as the "deferred approach to the limit."

In this case, several solutions of the same problem with different values of

p and q are carried out, and from these one may infer the solution for the

differential equation by extrapolation. These procedures are not incor-

porated in the present coding but could easily be handled by the UNIVAC.

They are mentioned here only to emphasize the fact that the convergence

tests discussed above have to do only with the solution to the difference

equation and that avoidance of truncation error is a separate problem.

In the coded routine which follows, a simple rectangular boundary has

been assumed. It should be pointed out, however, that modification of this

routine to handle somewhat more general boundaries is not difficult. So

long as the domain is bounded by vertical or horizontal lines connecting

equally spaced lattice points, no particular difficulty is encountered. As

examples of such domains the following illustrations are given. (Obviously

curvilinear boundaries may be approximated by such rectangular bound-

aries.)

L^
The same systematic serial numbering of lattice points would be used as

in the case of the simple rectangular boundary. In order to make use of the

same iteration equation and corresponding coded routine, this numbering

should be such that the points which are the neighbors of point j are always

(j — 1), (j + 1), (j — q), and (j + q). This is achieved by setting up a

simple rectangular lattice which covers the actual domain of interest.

Then, just as the corner points of the rectangular lattice are ignored in the

simple problem, all other points which lie outside of the domain of interest

will also be ignored. This means that in the actual routine for the more

complicated cases an additional set of constants must be supplied as part of

the initial data of the problem. These constants specify those values of j

which mark off the beginning and end of each row in the lattice.
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In any numerical work, and particularly in extensive calculations, at-

tention must be given to the magnitudes of the numbers which occur at

various points of the work. With the UNIVAC, facilities are provided which

make it unnecessary for anyone to estimate what magnitudes are likely to

occur or to provide in advance the proper scale factors to prevent numbers

from running out of bounds. When numbers exceeding unity may possibly

occur, the operator can insert as a part of his problem a subroutine which

will automatically introduce appropriate scale factors and carry on the

computation correctly. Also subroutines can be used in such a way as to

achieve what is known as a "floating decimal point," making it entirely

unnecessary for the operator to give any attention to the magnitudes of

numbers. In this case all numbers are put in the form ^4(108), where A is a

number whose magnitude is less than unity and s is an integer which may

range between exceedingly wide limits. The pair of numbers A and j are

then used by the computer in conjunction with subroutines which always

cause them to be interpreted as A (10s).

In the plane potential problem presented here, there is no need to resort

to a "floating decimal" process nor to make use of the special facilities for

accumulator overflow, since a single scale factor applied to the original

input data will automatically insure that no number greater than unity

will ever occur during the course of the computation. This scale factor is

conveniently chosen as an integral power of 10. After applying such a scale

factor to all boundary values, no boundary value should have a magnitude

greater than .25. For example, if the largest boundary value for a given

problem is 625 before scaling, then one should use a scale factor of 10-4

so that the boundary value as presented to the computer becomes .0625.

Consequently, the sum of four function values which must be formulated

during the iterative process will never exceed unity, and since such sums are

multiplied by .25 to obtain a new function value, no number exceeding unity

will ever occur in the computation.

It is thus apparent that a fixed decimal point is satisfactory for this

problem, once such a scale factor has been introduced, and that the intro-

duction of this scale factor is so simple as to be trivial. After convergence has

been obtained and the resulting function values are read out, nothing more

than a shift in decimal point is required to introduce into these results the

compensating scale-factor to make them applicable to the original problem.

Preparation of a Boundary Value Problem for Solution by the UNIVAC

System.—In the preparation of a problem for solution by the UNIVAC sys-

tem, use is made of a typical coding sheet having three columns : the first

shows memory locations ; the second contains the first half of a word or one

instruction ; and the third contains the second half of a word or another in-

struction. It is convenient to stagger the halfwords so as to allow notes to

be entered at the right of each instruction.

In the following programming routine, parentheses around an order

(e.g., the orders stored in 0001) denote the fact that this order is continually

being modified. Also, it should be noted that, at the beginning of the routine,

the initial start button is pressed, the first block of orders are read from tape

1 into the I tank and thence to memory cells 0000 to 0060, and the first

order stored in cell 0000 is automatically executed.
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The actua I program for the problem is as follows :

p number of rows

q number of columns

i  number of the iteration

0000        110000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

0012

(320100

L 0060

A 0061

000000

(B 0101

(A 0132

KO0O0

H 0059

AlOOOO

A 0058

A 0059

A 0005

0013 C 0005

0014 A 0006

0015 A 0008

0016 C 0008

0017 A 0011

0018 A 0046

0019 L 0057

0020 C 0056

320060

A 0001)

Q 0005

C 0001

U 0001

A 0130)

A 0161)

M 0044

(S 0131)

.10000

C 0058

(C 0131)

A 0045

X 0000

C 0006

A 0046

X 0000

C 0011

A 0056

Q 0021

U 0005

Explanation of Instructions

One block of words from tape 1 to I register.

Contents of I register transferred to memory cells 60-119

inclusive.

Boundary values and  initial  internal values  placed in

memory locations 100-999 inclusive.

W(2)i placed in A.

W(q+ 1), added to (A).

W(q + 3); added to (A).
W(2q + 2)i added to (A).
4W(q + 2)¡+i placed in L; A cleared.

W(q + 2)i+i placed in A.

(A) stored in 0059 ; also held in A.

W(q + 2)i+i - W(q + 2)i = 6 placed in A.

S shifted one digit to the left; left-hand digit dropped.

S shifted one digit to the right.

S151 placed in A.
2 j o ¡ cleared to 0058 ; A cleared.

W(q + 2);+i placed in A.
W(q + 2)i+i cleared to 0131 ; replaces W(q + 2),-.

(B0101 A0130) placed in A.
(B0102 A0131) placed in A; order to be stored in 0005

modified; (0045) in X.
(B0102 A0131) cleared to 0005; A cleared.

(0045) now in A.
(A0133 A0162) placed in A ; order to be stored in 0006 now

modified.

(A0133 A0162) placed in 0006; A cleared.

1 added to count of averages.

If the count of averages = the count denoting end of row

(n(q — 2)), control transferred to 0021.

Count cleared to 0056.

Return to instruction sequence for computing averages

(W(j)i values) of next row.
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0030 B 0055

0031 000000

0032 B 0049

0033 A 0050

0034 A 0051

0035 A 0052

0036 C 0056

0037 A 0053

0038 00000

0039 (530100)

0040 B 0039

0041 A 0061

0042 000000

0043 000000

0044 025000

L 0058

T 0039

C 0005

C 0006

C 0008

C 0011

C 0058

C 0057

U 0005

L 0062

Q 0043

C 0039

U 0039

4.0000 J

000000

Explanation of Instructions

If iteration has been completed (i.e., values of W(j)i for

784 values of j completed), control transferred to 0030.

q — 2 added to count in 0057.

3 added to labels at row end.

3 added to labels at row end.

Return to subroutine beginning in 0005.

Maximum allowable error placed in A.

21 51 placed in L.
If error is within limits, control transferred.

If error is greater than or equal to max. allowable error,

averaging continued.

Original orders reset in 0005, 0006, 0008, 0011.

"No. of averages" count set to zero.

21 í | set to zero.

(q - 2) = 28 placed in A.

(g - 2) = 28 cleared to 0057.

Final values inserted in tape 3.

Machine stopped.

Explanation of Storage

To divide the sum of the values of the four surrounding

points by four.
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0045
0046
0047
0048
0049
0050
0051
0052
0053

0054

0055

0056

0057

0058

0059
0060
0061
0062

000001
000000
000003
000000
B 0101
A 0132
H 0059
A 0059
000000

000000

000000

000000

320940
000060
530940

000001
000001
000003
000003 .
A 0130]
A 0161 [
S 0131
C 0131,
000028

000000   000784

000000

000028

000000

A 0001
000000
L 0062

Explanation of Storage

To alter orders so the same process can be carried out for

the next point to the right.

To put the initial orders in the associated memory posi-

tions in preparation for the execution of the next itera-

tion.

Contains q — 2 which is used to determine when a row is

completed. (Constant)

Contains (p — 2) (q — 2) for determining the completion

of an iteration. (Constant)

Contains the maximum allowable error against which

2)ê|is checked.

Contains count for number of averages which is checked

against 0057 and 0054 to determine the end of the row and

end of iteration, range from 0-784. (Variable)

Contains n(q — 2) to determine the end of a row. (Vari-

able)
To store the sum of the absolute difference between the

values at points for successive iterations. (Variable)

Used for temporary storage.

Used in tape orders.

Time Required for Solution of the Problem.—The following formula enables one to calcu-

late the number of seconds required for the UN I VAC solution of the problem if the values of

p and q are specified and if the number of iterations is known or can be estimated :

Time required in seconds

= 2.3 + x\_(p - 2)([3 - 2].01071 + .005075)] + x(.000945) + (x - 1)(.004235),

where x is the number of iterations, (e.g. : p = 30, q = 30, t = 2.3 + 8.6* seconds). For p and

q = 30, we see that each iteration requires 8.6 seconds. There is also a period of 2.3 seconds

associated with input and output, which time is independent of the number of iterations so

long as the storage requirements do not exceed the internal memory capacity. This applies,

then, to all values of p and q whenever the product pq does not exceed 900.

Estimation of the number of iterations required is not always easy,

and no attempt will be made here to discuss this except to point out that

this depends not only upon p, q, and the maximum allowable error, but also

upon the boundary conditions.

When, to obtain the proper fineness of lattice, p and q must be chosen so

large that their product exceeds 900, the external magnetic tape memory

has to be used during the course of the problem solution to accommodate

some of the information. Since the UNIVAC can be equipped with as many

as 12 magnetic tapes, all under its automatic control, and each of these can

store approximately one million decimal digits, there is ample capacity for

handling problems for which hundreds of thousands of lattice points are

used. There is no essential difficulty in programming problems of this mag-
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nitude. The programming is particularly easy when either p or q, whichever

is smaller, is small enough so that three rows (or columns) of the lattice can

be held in the internal memory at one time; that is, problems for which

either p or q is less than 300 are easily programmed. If both p and q exceed

300, somewhat more elaborate programming must be used, and more time

will have to be allowed for transfer of data to and from tapes.

The formula which has been given here to be used in estimating time of

solution is strictly applicable only when the product pq is less than 900.

However, it will be observed that the computation time per iteration is

almost four times as large as the time required for input and output. (The

high external-internal transfer rate of 10 000 decimal digits per second has

been provided so that limitations from this cause normally do not occur.)

It may be expected that the additional programming required to accomplish

the transfers to and from magnetic tape for these larger problems will add

slightly to the operating time of the computer, but the above considerations

would indicate that one could take xwspq as the approximate time in seconds

for each iteration of a large problem. Since the number of iterations required

depends in a complex way upon various factors, including the boundary

conditions, and is strongly dependent upon pq, there is no need to have a

more exact estimate of the iteration time for a large problem.

Summary.—The solution of the plane potential problem using the Lieb-

mann method of finite differences has been formulated in terms of the in-

struction code for the UN I VAC computer. Explicit coding has been given

only for the simple rectangular boundary, but the nature of the modifica-

tions required for more general boundaries has been discussed. Time esti-

mates for each iteration have been made, and other topics such as con-

vergence tests, truncation errors, and scale factors have been considered.

Problems with hundreds of thousands of lattice points can be handled auto-

matically by the UN I VAC system using coded routines only slightly more

complicated than the one presented.

Frances E. Snyder & Hubert M. Livingston

E-MCC
Editorial Note: It is believed that there is wide interest in the question of instructing

high-speed electronic computers now under design to perform the sequences of operations
pertinent to selected problems. This article, submitted by members of the staff of a company
engaged in the development and construction of electronic digital computers, is considered
to be a useful introduction to the use of the instruction code for the computer therein dis-
cussed. It should perhaps be pointed out here, however, that the tone of the article is not to
be construed to mean that UNIVAC systems have a history of successful operation, rather
as an indication of the familiarity of the authors with the design features of the proposed
machine and their evaluation of its potential utility. In fact, the construction of the first
UNIVAC has not yet been completed.

1 The UNIVAC trade mark and Instruction Code were in 1948 copyrighted by the
Eckert-Mauchly Computer Corporation (E-MCC), Philadelphia, Pa.

2 The UNIVAC system was designed by the E-MCC under contract with the NBS,
supported by the Bureau of Census (BC). The investigation of the suitability of the system
was carried out jointly by the NBS and the E-MCC together with the help of interested
persons in the BC.

3 H. Liebmann, "Die ausgenährte Ermittelung harmonischer Funktionen und kon-
former Abbildungen (nach Ideen von Boltzmann and Jacobi)," Akad. d. Wissen., Munich,
Berichte, 1918, p. 385-416. The Liebmann method is actually a specialization of the Gauss-
Seidel iterative process written up by G. Shortley & R. Weller, "The numerical solution
of Laplace's equation," Jn. Appl. Physics, v. 9, 1938, p. 334-348.


