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Checking by Differences—I
1. Introduction and Summary. When computing a table of numerical

values of a mathematical function, an essential need is a check on the ac-

curacy of the results. For this check to be fully satisfactory it must be

independent, as nearly completely as possible, of the original calculations.

This independence should apply to the method of computation used in the

check and not only to the numerical details. Apart from this it is convenient

to have a check that is as simple as possible to apply.

When the values computed form a systematic table for equally-spaced

values of some associated variable—usually, but not necessarily, taken as

argument—the best-known check is probably that provided by forming a

table of differences. The accuracy of the results is then tested by an ex-

amination of the general run of the values of the differences of some high

order, say 3rd, 5th or possibly 10th differences. It will be assumed in what

follows that argument values are equidistant.

The check provided by this process of differencing is very easy to apply,

and is almost always fully satisfactory in all the senses outlined above. The

precise details of the process and its pitfalls do not, however, seem to have

been set out fully in print. It is the purpose of this paper to consider some

aspects of the process, and to discuss possible methods of detecting and

finding several types of error.

In 2, the normal difference table for equal argument-intervals is discussed.

The cases of a polynomial and of a general function are both considered.

In 3, the effect of an isolated error is exhibited, and in 4, methods for

distinguishing true errors or blunders from inevitable rounding-off errors

are considered.

It is proposed to examine in a later paper some cases where there are

blunders due to causes other than mistakes in function values, or where

there are coupled or systematic blunders, or where the resulting effects are

overlapping for other reasons. In particular, ways of distinguishing mistakes

made during the formation of differences are not considered in the present

paper.

2. The Normal Difference Table. 2.1. When a table of exact values of

a polynomial of degree n, for equidistant values of the argument, is differ-

enced, the values of the w-th differences are all equal, and values of higher

differences are all zero. This is too well known for a numerical illustration

to be needed.
If, however, the values of the polynomial tabulated are rounded off to a

fixed number of decimals, the w-th differences are no longer constant, but

periodic, with period depending on the degree of the polynomial and on

the number of figures dropped. Higher differences also form cycles of the

same period. This may be illustrated by means of the quadratic function

I0x(x — 1). If this is tabulated to the nearest integer for interval .1 in x,

the second differences run through the ten values 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,

this cycle being repeated indefinitely. It may be noted that the average value

is .2, in agreement with the true second difference for a table of exact values.

Likewise, the third differences give a cycle 0, 0, +1, —1, 0, 0, 0, 0, +1, —1,
with average zero.
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2.2. Consider now the more usual case of a function that cannot be

tabulated exactly. Table I gives 5-decimal values of logio N, for A7 = 10(1)30,
with all differences to order 10. In this illustration the interval of the argu-

ment has been chosen to be small enough for checking by differences to be

feasible. If too large an interval is chosen, the differences may diverge as

order increases.

It will be noted that:
(i) For low orders of differences, regularity is apparent. The magnitude

diminishes as order increases. This holds up to about 54 in the present table.

(ii) For high orders of differences, irregularity appears. This is due to

the inevitable rounding-off errors, and shows first in an irregular sign-

pattern. Later, as order increases, the differences increase in magnitude but

more or less irregularly.

(iii) For a sequence of differences of a particular (high) order, the larger

values tend to occur in groups, with signs strictly alternating and with

values falling away on either side from a central maximum value, or pair

of such values.

TABLE I

N

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Log AT

1.00000

1.04139

1.07918

1.11394

1.14613

1.17609

1.20412

1.23045

1.25527

1.27875

1.30103

1.32222

1.34242

1.36173

1.38021

1.39794

1.41497

1.43136

1.44716

1.46240

1.47712

+4139

+3779

+3476

+3219

+2996

+2803

+2633

+2482

+2348

+2228

+2119

+2020

+ 1931

+ 1848

+1773

+ 1703

+ 1639

+ 1580

+ 1524

+ 1472

5»

-360

-303

-257

-223

-193

-170

-151

-134

-120

-109

- 99

- 89

- 83

- 75

- 70

- 64

- 59

- 56

- 52

i» 8*

+57

+46

+34

+30

+23

+ 19

+ 17

+ 14

+ 11

+ 10

+ 10

+ 6

+ 8

+ 5

+ 6

+ 5

+ 3

+ 4

-11

-12

- 4

- 7

- 4

- 2

- 3

- 3

- 1

0

- 4

+ 2

- 3

+ 1

- 1

- 2

+ 1

-1

+8

-3

+3

+2

-1

0

+2

+ 1

-4

+6

-5

+4

-2

-1

+3

+ 9

-11

+ 6

- 1

- 3

+ 1

+ 2

- 1

- 5

+ 10

-11

+ 9

- 6

+ 1

+ 4

-20

+ 17

- 7

- 2

+ 4

+ 1

- 3

- 4

+ 15

-21

+20

-15

+ 7

+ 3

+37

-24

+ 5

+ 6

- 3

- 4

- 1

+ 19

-36

+41

-35

+22

- 4

-61

+29

+ 1

- 9

- 1

+ 3

+20

-55

+77

-76

+57

-26

«'»

+ 90

- 28

- 10

+ 8

+ 4

+ 17

- 75

+ 132

-153

+ 133

- 83
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The properties (ii) and (iii) are emphasized if a true error, or "blunder,"1

should occur, and form the basis of the method for the detection and loca-

tion of such blunders by differencing.

These observations are readily explained by noting that each value of

the function is the sum of a tabular entry and a rounding-off error. This

rounding-off error forces the value tabulated to be a multiple of the unit of

the final decimal, and is at most half of this unit in magnitude.

Table II shows the rounding-off errors E of Table I, with differences to

the 10th. These differences were all obtained with three further figures and

rounded off individually, and are within half a unit of the 7th decimal from

the true value.

It will be noted that as the order of the differences increases beyond the

4th-—that is, from the point in Table I where the differences begin to show

obvious irregularity—the differences in Table II tend to be more and more

nearly integral multiples of the 5th decimal unit, and to give values ap-

proaching zero more and more closely when added to the corresponding

values in Table I. This confirms the expectation that the differences of the

true values of the function tabulated continue to decrease, with increasing

order of differences, beyond the order to which this decrease remains ap-

parent in a 5-decimaI table.

TABLE HI

/ i* i4

0 0 0
0 0 0

0 0 0
0 0 +€

0 0 +e
0 +í -5e

0 +í -4e
+t -3e +10e

* -2e +6é
-e +3c -10e

0 +i -4«
0 -« +5e

0 0 +t
0 0-6

0 0 0
0 0 0

0 0 0

3. An Isolated Error. 3.1. Consider next the effect of an isolated error or

blunder e. This is exhibited in Table III. This extends only to 5th differences,

as it is sufficiently obvious that the coefficients are binomial coefficients with

alternating signs.

3.2. The method for detecting, locating and evaluating a blunder in a

table of exact values of a polynomial is now clear. A difference table is formed

and the differences of some order p greater than n, the degree of the poly-

nomial, are examined. These differences should all be zero; if, however, it is

observed that some are not zero but alternate in sign and have magnitudes

proportional to the binomial coefficients

W     r\(p - r)\

then an isolated error is indicated.
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lip = 2k is even, there will be a pth difference that is numerically greater

than the others; the blunder should be found* in the function value on a

level with this. Denote this largest difference, with its sign attached, by D2k.

The value of the amount to be added to the function value in question, in

order to correct it, is one of the values

+D2/2, -A/6, +ZV20, -ZV70, +Ao/252, ••-, (-\)k~lD2k

It should be noted that these apply only when the corresponding difference

D2k should be zero, i.e., when 2k > n, the degree of the polynomial concerned.

If p = 2k + 1 is odd, there will be two successive pth differences of

equal magnitude, larger than the rest. The blunder should be found in the

function value at the level half-way between these. If the upper of these

differences is D2k+i and the lower —D2k+\, the correction to be added to the

function value is one of the values (with 2k + 1 > n)

-Du +Dt/3, -ZV10, +ZV35, -ZV126, •••, (-1)*A*_,

3.3. Consider next a difference table involving a function that is not a

polynomial. In this case the effect due to a true error or blunder, exceeding

half a final unit, is mixed up with the effects of the rounding-off errors.

Detection and location of the error involve the disentanglement of these

effects.
For large blunders the method of detection is, with small modifications,

the same as for a polynomial. A difference table is first formed to an order

p of differences such that the normal vertical sequence of signs (i.e., the

sequence of signs in a region free from the effects of blunders) has ceased to

be regular. This means that the pth differences of the true function—which

are regular—are swamped by the irregularities due to the rounding-off errors,

that is, that the function differences are effectively zero.3 Any sequence of

differences having the numerically greatest difference substantially larger

than the normal pth differences due to rounding-off will at once stand out,

and the error indicated can be located and estimated in the same manner

as in 3.2, except that:
(i) The successive differences will be only approximately proportional

to the binomial coefficients of order p.

(ii) Instead of estimating the correction from a single value Dp of the

pth difference, it is better to add the numerical values of a sequence of

differences, centered about the largest, and to divide by the sum of the

corresponding binomial coefficients. It is also sometimes useful to repeat

and verify the estimate with differences of a higher order, where true function

differences will usually be smaller.

Table IV illustrates these various points.

An error is apparent in 52, but, away from the neighborhood of the error,

the signs are regular in 53 and even in 54, as may be seen in Table I. In 56

the large differences are in the ratios —10, +10, —5. Thus, approximately,

the correction C is given by (10 + 10 + 5)C = 180 + 182 + 89 = 451.
Hence 25C = 451 and C = 18. Hence, log 19 should read 1.27875, agreeing
with Table I.

/C.

/V



8 checking by differences—I

Use of a single value of S7 gives

(10 + 2-10 + 5)C = 180 + 2-182 + 89 = 633

giving, again, C = 18.
Choice of suitable difference to which to apply the process is determined

by the equality of results from differences of two successive orders; this

equality is taken to indicate that the variation of the result with increasing

order of difference has ceased.

A process for filling in the gap that appears, at first sight, more satis-

factory is to use Lagrange's interpolation formula based on tabular values

but omitting, of course, the value needing correction. The gap should be as

near the middle of the run of values as possible. If, however, p points are

used, Lagrange's formula assumes that the p-th difference is zero; that is,

the result will be precisely that obtained by equating to zero the appropriate

p-th difference in order to determine the error.

TABLE IV

N log AT S2 6*

16    1.20412

17    1.23045
+2633

+2482
-151

18 1.25527 _,„    - 1+2330 la¿                              + 69

19 1.27857 o.            +68              ,8n
+2246 ~ Si                              -111    ~180

20 1.30103 117    -43             , .„,
+2119 ~127            + 71    +182

21 1.32222 _ 00    +28               HQ
+2020 yy                               -  18                 öy

22 1.34242 so            +10                                  ,   ,,
+ 1931 Sy                               -    4            + 14

23 1.36173 s,            +6
+ 1848 ÖJ

24 1.38021

4. Disentanglement of Blunders from Rounding-off Errors. 4.1. It is
desirable to know a lower limit to the size of blunder that can be detected

with certainty, and an upper limit to the size of those blunders for which it

is almost useless to attempt detection by differencing. Blunders intermediate

in size may or may not be detected, depending on the run of neighboring

rounding-off errors; it is useful to have an estimate of the probability of

detecting such an intermediate blunder according to its size. A more im-

mediate problem, however, is the determination of the probability that a

difference of given order and given size is due solely to the effect of rounding-

off errors. The complementary probability gives the likelihood of a blunder.

These limits and probabilities depend, of course, on the order of the differ-

ences examined.

In practice the procedure is as follows: All the differences of a particular,

sufficiently high, order are examined. Those numerically exceeding the limit

L that indicates a blunder with certainty (there may be several such large

differences in succession, of alternating signs, due to a single blunder) are

noted and examined carefully in order to locate the blunder, which must

then be removed. When all such blunders have been eliminated there re-
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mains a run of differences, none numerically larger than L, but which may

have some entries, larger than the majority, that could arise from an unlikely

combination of rounding-off errors, but have a good chance of being due to a

small end-figure blunder. The nearer such a difference is to L in magnitude,

the more nearly does the probability that it is due to a blunder approach

unity. The problem, then, is to choose K such that all differences numerically

greater than K should be examined, while all those numerically not greater

than K may be accepted as satisfactory, being almost certainly due to

rounding-off errors.

4.2. It is easy to determine the limit L above which a blunder is certainly

indicated. The sequence of rounding-off errors giving rise to the greatest

possible effect in the differences is ••• + £, —§, +§, — è. •"' extending

indefinitely in both directions. This leads to the sequence • • -, +2P~1, — 2P~1,

+2P~1, —2P~1, • • • in the pth differences. The maximum rounding-off effect

L in the pth difference is thus 2p~i in magnitude.

On the other hand, if a blunder e (assumed positive and not too small) is

made in a tabular value, the case most unfavorable for detection comes

from the sequence

(S)        • • • +2i 2i  "T"2> e>  *T"2> 2>  "T"2>   ' " "

The corresponding differences on a level with the error e are given in the

second line of Table V.

TABLE V

Difference 2nd 4th 6th 8th 10th 12th
From sequence (5) l-2e 6«-5 22-20e 70e-93 386-252« 924e-1586
Numerically    largest   legiti-

mate errors ±L -2 +8 -32 +128 -512 +2048
Maximum error <mï that can f  3/2 13/6 27/10 221/70 449/126 1817/462

escape detection \ 1.50 2.17 2.70 3.16 3.56 3.93

If these are just equal, numerically, to the maximum legitimate values due

to rounding-off (given in the third line of Table V, with the appropriate sign

to give maximum e), then the corresponding maximum errors that might just

escape detection result. These are given in the fourth and fifth lines of the

table. In fact, for order 2k,

em« = -h + 4y yk J

Larger blunders cannot escape detection.

4.3. The limits L and the blunders emax that may just escape detection

are, however, sometimes too great to be of practical use. Differences, due

entirely to rounding-off, with magnitude approaching L, are so rarely met

with that the occurrence of such a difference is a strong reason for suspecting

a blunder. It is necessary, then, to choose a different limit K, as indicated

in 4.1.

Satisfactory practical limits K have been obtained, from experience in

the examination of many tables, by Dr. L. J. Comrie. These limits are very

roughly such that about 1 difference in 100 exceeds K numerically and re-

quires more careful examination, and are as follows:

Difference 3rd     4th      5th       6th       8th       10th        12th 15th
Practical limit K 3 6 12 22 80 300 1100 8000
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The determination of exact theoretical probabilities for differences of
various sizes is a matter of some difficulty. A theory and technique have been

devised, but results are not yet complete.4 If we wish to choose the limit K

so that the chance of a difference arising from rounding-off errors that ex-

ceeds K is less than .01, while the chance of an error exceeding K — 1 is

greater than .01, the following results are relevant.

Order of   Num. Value of Chance of
Difference      Difference Occurrence

2                  2   1 0.5

£   2 0.0

Order of   Num. Value of Chance of
Difference     Difference Occurrence

6 £21 0.0128

£   22 0.0079

£  3
£   4

0.04
0.00

£  41
>  42

0.0108
0.0084

£   6
£   7

0.0130
0.0009

£   79
£   80

0.0111
0.0099

£11
£12

0.0140
0.0052

£155
£156

0.0103
0.0097

The probabilities serve to show the consistency of the practical limits given

above, and to provide additional limits of 42 for the 7th difference and 156

for the 9th difference.
4.4. It is not to be supposed that the limits K of the last section must

be adhered to rigidly. The major field for use of these precise limits is for

differencing tables with a final figure that should be correct within half a

unit. In this case, the original calculations will contain one or more extra

figures, and these extra figures should be used in the examination of the one

doubtful case in 100 previously mentioned, in order to verify that the actual

rounding-off errors that occur do give rise to a difference of the right sign

and about the right size.

If a printed table is differenced, the extra figures may not be available,

while if the function is one difficult to compute, and if the table is a long one,

the work of recomputing values to test one difference in 100 may be pro-

hibitive. In such cases it may be necessary to adopt a higher limit than K,

possibly even L may have to be used, in which case one would state, for

example, that an examination of the 8th differences showed that no isolated

end-figure error of 3.2 units or more could occur in the table. The possibility

of systematic or coupled blunders remains.

An alternative plan is to difference the function values as computed,

retaining all figures computed, including one or more guard figures. It is

then unnecessary to examine marginal blunders or errors too closely, and

the limit L, or even higher limits such as 2L or 3L, might be adopted. This

procedure has the advantage that blunders large enough to need correction

will stand out prominently.

5. Part I of this paper has been concerned with the location and detec-

tion of isolated blunders. There remain several possibilities to be discussed

in Part II. These include:
(i) The recognition of blunders made during the differencing.

(ii) The detection and location of coupled or multiple blunders, such as
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(a) two equal blunders in successive values or (b) a systematic succession of

erroneous values in a table.

It is also proposed to give error patterns, such as that in Table III,

for tables of divided differences, for use with tables having certain common

arrangements of arguments at unequal intervals, for example, with a table

having arguments
Di ill} t   U 11   x.

J. C. P. Miller
Scientific Computing Service

23 Bedford Square
London, W.C. 1, England

1 The introduction of this useful distinction in name between rounding-off and true
errors is due to C. R. G. Cosens.

' It must be remarked that the sequences of errors discussed here can arise from a cause
other than the one indicated, though such causes are comparatively less common. For
instance, if differencing is done on a calculating machine, a function value may be correctly
recorded, but wrongly set on the machine. Likewise, a different sequence of differences
indicates blunders of a different type. It is hoped to discuss some of these in Part II of
the paper.

'In practice, a large blunder shows up well enough for location in earlier orders of
differences, in fact, as soon as the largest of the differences due to the blunder sufficiently
exceeds the true differences in magnitude, say in the ratio 5 to 1 or 10 to 1. Detection is
possible in still earlier differences.

4 A. van Wijngaarden & W. L. Scheen of the Mathematisch Centrum of Amsterdam,
Holland, have developed the theory independently and have obtained an asymptotic expan-
sion. The result given for 9-th differences in our table was obtained by them and communi-
cated to us for inclusion in this paper. Their 1 percent limit for 10-th differences is 303.

An ENIAC Determination of ■* and e to more
than 2000 Decimal Places

Early in June, 1949, Professor John von Neumann expressed an interest

in the possibility that the ENIAC might sometime be employed to deter-

mine the value of t and e to many decimal places with a view toward obtain-

ing a statistical measure of the randomness of distribution of the digits,

suggesting the employment of one of the formulas:

tt/4 = 4 arctan 1/5 - arctan 1/239
x/4 = 8 arctan 1/10 - 4 arctan 1/515 - arctan 1/239
x/4 = 3 arctan 1/4 + arctan 1/20 + arctan 1/1985

in conjunction with the Gregory series

arctan x = £ (-l)n(2n + I)-1***".
n-0

Further interest in the project on x was expressed in July by Dr. Nicholas

Metropolis who offered suggestions about programming the calculation.

Since the possibility of official time was too remote for consideration,

permission was obtained to execute these projects during two summer holi-

day week ends when the ENIAC would otherwise stand idle, and the planning

and programming of the projects was undertaken on an extra-curricular

basis by the author.
The computation of e was completed over the July 4th week end as a


