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Most of the articles are devoted to the mathematical derivation of

parameters for design of four-bar linkages and harmonic transformer

mechanisms which will best approximate the desired motion. Also included

is a description of a computing machine (p. 158-160) with a continuous

movement of the components rather than movement with discrete intervals

such as used by common mechanical digital computers. The continuous

motion is obtained by means of planetary gears.

The volume concludes with an article by I. I. Artobolevskii & N. I.

Levitskiï on models of Chebyshev's mechanisms, which are preserved in

the Leningrad Academy of Sciences. There are 25 of these mechanisms which

are described and illustrated. The illustration of Chebyshev's "arithmom-

eter" is disappointingly inadequate.

B. Bresler
College of Engineering

University of California

Berkeley, California

15. J. G. L. Mic:;2L, "A nomogram for calculating extended terms," Insti-

tute of Actuaries Students' Soc, Jn. v., 8, 1948, p. 147-159.
Two nomograms are given for the calculation of endowment insurance.

16. F. J. Murray, "Linear Equation Solvers," Quart. Applied Math., v. 7,

1949, p. 263-274.

17. G. H. Orcutt, "A New Regression Analyzer," R. Stat. Soc, Jn., Sec. A,

v. Ill, 1948, p. 54-70.

The analyzer described in this paper is based on units, each of which

consists of a card reader and commutator. By means of this combination a

time sequence of voltages Xi, X2, X3, • ■ •, X„ corresponding to the two-digit

quantities punched on the cards is obtained. When a number of units are

combined with suitable output circuits it is possible to obtain a variety of

second degree expressions, for instance 2Z, (X< — X) • ( F, — Y) or £ X;- F<+»,

where k is a shift subject to the operator's control. The author discusses in

detail the application of these expresstons to statistical problems including

those in which varying time lags between sequences are to be considered.

The advantages of the use of the commutator over parallel operation consists

in the simplicity of the associated circuits and the fact that the various

sequences of voltages can be shown immediately on an oscillograph.

F. J. Murray
Columbia University

New York 27, N. Y.

NOTES

110. New Factorizations of 2" ± 1.—In MTAC, v. 3, p. 496-7 we
gave a proof of the primality of (292 + 1)/17. Using the same methods we

have now established the primality of

Nx = (2™ + l)/3 = 2014 87636 60243 81957 84363
and

Nt = (285 + l)/(3-11-43691) = 26831 42303 60653 52611
AT, = (2» - 1)/167 - 579 12614 11327.56490.87721.



NOTES 55

In the case of Ni, which is the 6-th largest known prime, we find that
for y = 277,

3" - 534 45942 48656 40551 54581 m W (mod N¿
and that

W2 = -3 (mod Ni).    Hence 27"> - 27 (mod Ni).

The largest prime factor of Ni - 1 is p = 22366891 = (Ni - l)/m.
Furthermore

3n - 1 = 591 99625 59867 68206 78419 (mod Ni),

which is prime to Ni. From this it follows, by Lehmer's theorem, that all
the prime factors of Ni are of the form px + 1. Combining this with the fact

that they are also of the form 158* + 1 we obtain

dx + 1 = 3533968778* + 1.

Now if A7! were composite we could write A7! = (dm + l)(dn + 1) with

mn í¿ 0. Using the reasoning of the footnote on p. 497 it follows that the

remainder on division of Ni by d2 would be less than 10M, whereas it is

greater than 3.6 1018. Hence Ni is not composite.

In the case of N2, the proof was more difficult. In the first place it was

found that if q = 3-11-43691 and if Q = 3", then

Q"' m Q (mod N2),

so that N2 behaves like a prime. Next it was found that

N2 - 1 = 2-3-5-17-257M = F-M,
where

M = 20471 06358 13423.

The number M was in turn tested for primality using the facts that 3M m 3

(mod M) and that M — 1 is divisible by the prime 10235291.
The primality of N2 now follows as before from the primality of M and

the fact that
3* - 1 = 24823 70333 63136 14240 (mod N2),

is prime to N2.

With the exceptions of 271 + 1 and 289 + 1, the first 100 numbers of the
form 2" + 1 are now completely factored.

The primality of A3 follows in a similar way. First of all A3 behaves like

a prime, since it was found that if a = 282, then

3" = - 384 (mod N3).

Next A3 — 1 is divisible by 383 and 4049. By using Lehmer's theorem it
was proved that the possible prime factors of A3 are all of the forms 383y + 1,

4049z + 1, 166w + 1, and hence of the form

257427322* + 1.

The same argument as applied to Ni finally establishes the primality of AY

This makes the 15-th composite Mersenne number to be completely
factored.

A. Ferrier
Collège de Cusset
Allier, France
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111.—Electronic Computers and the Analysis of Stochastic
Processes.—Hartree l has remarked on the impact of modern calculating

machines upon mathematical analysis: by suitably recasting the mathe-

matical treatment of a problem we may profit from the capacity and speed

of these machines to get quick solutions of long or otherwise intractable

enquiries. Stochastic processes supply a noteworthy illustration of the

mathematician's need to think in terms of numerical methods.

Leslie 2 considers the deterministic growth of animal populations ; and

by formal mathematics he reduces the problem of specifying the growth-rate,

knowing the birth and death mechanism, to the determination of the

dominant latent root of a matrix. This solves the problem analytically; but

to solve it numerically we must calculate this latent root. Duncan &

Collar * give the appropriate computing technique. To study their method

is instructive: for it is identical with Leslie's analysis—that is, they take a

given population (represented by a vector), subject it to a given birth and

death process (represented by a matrix), and deduce the value of the domi-

nant latent root from the observed growth-rate of the vector. This exempli-

fies the following common situation. There is a practical problem A, stated

in terms of practical data B. To solve A, we set up C, the mathematical

model of A; and by formal analysis deduce D, the solution of C. To compute

D, however, for the given conditions B, we set up E, the numerical model

of A conforming to B; and solve E by numerical methods. Evidently the

construction of C and its reduction to D are unnecessary steps if we merely

wish a solution D. This is not to stigmatize C as useless; for a formal sym-

bolic solution often affords insight into the structure of a problem, and some-

times is more tractable than an entirely numerical resolution of E.

Situations of this kind will probably occur in abundance in the analysis

of stochastic processes. To take one of the simplest instances, corresponding

to the deterministic description of population growth, there is a more

realistic stochastic description with a formal solution in terms of integral

equations; and the position here is more extreme than in the example previ-

ously cited, because the numerical solution of these equations is more

elaborate than the evaluation of a dominant latent root.
Stochastic processes are a relative innovation still certainly in their in-

fancy : but it is clear from three fundamental papers [Bartlett,4 Kendall,6

and Moyal 6] that these processes, ranging as they do over a huge field of

applications from epidemiology to atomic physics, will prove singularly

important in the near future. It is proper to ask how far mathematical

methods, and particularly numerical methods, are girded up to meet the

coming demands from this quarter.
From a very general aspect, the problems comprise a set of arithmetical

operations applied to random space-time functions, yielding answers whose

complete specification involves statistical distributions. A possible direct

attack—direct in the same sense as the Duncan-Collar method is direct

when applied to Leslie's problem—is to feed in as data a sample from the

random function aggregate, subject each member of the sample to the

relevant arithmetical operations, and enumerate the results. This has the

merit of simplicity; and the apparent drawback, that a large sample is

probably needed to give an adequate representation of the output distribu-

tions, can be countered by the electronic computer's distinctive facility of
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performing routine arithmetic operations upon large masses of data, pro-

vided that the rate of supply of data is commensurate with the operating

speed of the computer. Is it then feasible to generate random function

samples electronically within the computer? At any rate, at first sight, this

idea seems promising. The noise and shot effects of a thermionic valve

furnish random functions. A random pulse/blank train in a computer's

binary decimal sequence generates a rectangular distribution, and can (at

least theoretically) lead to an integrated Fourier series whose coefficients

are distributed normally and independently over the complex domain

[Paley & Wiener 7].

This is not however the place to enter into details, even were they less

speculative: but it is a matter for consideration whether stochastic processes

could be analyzed in the direct fashion suggested on an electronic computer,

and, if so, whether they will be pervasive enough to warrant building a

special unit into the computer to generate random functions; and this note

will have served its purpose if it provokes research on this issue at the present

opportune juncture, when a number of electronic computers are projected

or under construction or in their developmental stages in various parts of

the world.
J. M. Hammersley

University of Oxford

Oxford, England
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33. Lenhart Tables.—As a supplement to the final number, 6, Nov.

1838, of The Mathematical Miscellany, v. 1, edited by Charles Gill (1805-
1855), is a 16-page pamphlet, with its own title-page, as follows: Useful

Tables relating to Cube Numbers, Calculated and arranged by William

Lenhart, York, Penn. Designed to accompany his general investigation of the

equation x3 + y3 = (x + y)(x2 — xy + y2), published in the Mathematical

Miscellany, vol. 1, page 114; and by him through his friend, Professor C. Gill,
presented to the Library of St. Paul's College, Flushing, Long Island, May 4th,

1837. As indicated in D. H. Lehmer, Guide to Tables in the Theory of Num-
bers, 1941, p. 64, this "rare table" "gives, for more than 2500 integers

A < 100 000, solutions of x3 + y3 = Az3 in positive integers." On the back

of the title page of this pamphlet is the following: "Besides the tables given


