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24. Henry Wallman, "An electronic integral transform computer and the

practical solution of integral equations," Franklin Inst., Jn., v. 250,

1950, p. 45-61.
A proposed device is described for presenting

" K(x, t)f(t)dt

in the form of a graph of a function of x on a cathode ray tube. K(x, t) is to

be obtained by scanning a photographic plate whose opacity corresponds to

the value of K at the point x, t. The multiplication of K and/and the value

of/(/) itself are to be obtained by using the components due to Macnee.1

The author shows how the persistence of the image on the screen of the

cathode ray tube can be utilized to construct an iterate of the transform and

describes also how non-linear transforms in the form

J    K(x,t)k(t,f(t))dt

can be obtained.
The paper also lists a variety of applications of such a device. The case

in which K(x, t) = cos xt yields the impulse response of an electrical net-

work. Such a device would readily yield the coefficients of the orthogonal

expansion of a function, the Hubert transform and the convolution integral.

Another set of applications is concerned with the solution of the integral

equations. Special cases treated include simultaneous linear algebraic equa-

tions, the Volterra equation, the use of Liouville-Neumann series, Fred-

holm's integral equation of the second kind, the Dirichlet problem for a

plane potential and a non-linear problem for a pendulum.
F. J. M.

1 A. B. Macnee, "A high speed electronic differential analyzer," I.R.E. Proc, v. 37,
1948, p. 1315-1324 [MTAC, v. 4, p. 119-120].

NOTES

124. Leslie John Comrie (1893-1950).—This great table maker and
pioneer in the art of mechanical computation was born in New Zealand in

1893. He received his early training and a M.A. degree at the University

of New Zealand. He saw active service during the first world war with the

New Zealand Expeditionary Forces and after the armistice went to Univer-

sity College, London and Cambridge University, where he received his

Ph.D. in Astronomy in 1923. After 3 years teaching in the United States at

Swarthmore College and Northwestern University he returned to England and

the Royal Greenwich Observatory as Deputy Superintendent of H.M.

Nautical Almanac Office. He became Superintendent in 1930 and held that

post Until 1936. Here he introduced modern computing methods which did

much to increase the efficiency and productivity of the office. It is this work

which brought out his genius for the organization and keen analysis of com-

puting and table preparation for which he later became so famous. He also

served brilliantly as secretary of the BAASMTC during 1929-36 and was
much concerned with the production of the committee's first six volumes.

In 1937 he left the Observatory to devote his entire energy to the develop-

ment of the Scientific Computing Service, the first enterprise of its kind.

The history of this organization is one of lasting achievement and pioneering

X
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effort. Its contributions to the war effort in the 1940's was the source of

much justifiable pride to Comrie. He served as cooperative editor of MTAC

from 1944-49, and in 1950 was elected Fellow of the Royal Society. His
death, Dec. 11, 1950, came as a relief from a lingering affliction.

The reader is referred to Mathematical Table Makers1 for a complete

account of Comrie's writings and tables. He is perhaps known most widely

as the editor of the third (1930) and later editions of Barlow's Tables. His most

recent work was the preparation of the monumental two volume edition of

Chambers's Tables. He delighted in the minute analysis of a computing prob-

lem with respect to a given machine and took great pleasure in finding scien-

tific uses for a particular feature of a machine which had been intended by

the manufacturer for some trivial commercial application. This exploitation

of the commercially available equipment with its built-in, mass-production

precision and service was always uppermost in his mind. He had no great

enthusiasm for the unreliable specially made computing device. I can recall

many friendly arguments with him beginning in 1932 on these two opposing

points of view, my side of the argument being, in those days, rather difficult

to maintain. His knowledge of numerical analysis was profound and at the

same time severely practical. He will be remembered for his "throw back"

method of modified differences. On his last visit to America in 1946 he was

impressed by what he saw of new computing techniques, but also somewhat

dismayed to see to what uses they were put. At one point of the inspection

he took me aside to remark: "These people have a terrific amount to learn

about computing." This remark is as applicable today as it was when he

must have made it (to himself) as a young man at Greenwich. It seems to

have been the keynote of this crusading calculator.

D. H. L.

1 R. C. Archibald, Mathematical Table Makers (The Scripta Mathematica Series no. 3),
New York, 1948 [_MTAC, v. 3, p. 143]. In this work will be found two portraits of Comrie.

125. The d2 Test of Random Digits.—The testing of digits for local

randomness, when the digits are to be used in a Monte Carlo method, seems

to require a different type of test from the four proposed by Kendall and

Babington-Smith.1 Kendall's tests (frequency, serial, gap, poker) apply to

random digits as used normally in random sampling, etc.

In a Monte Carlo method, random digits are used to select a random

point in the unit square, ¿he digits thus representing the coordinates of a

point between (0, 0) and (1, 1).
For two such points, the probability that the square of the distance

between them be less than a2 is given by:2

,       8a3       a4
p = ™~ - T" + Y '

for    a2 = 0.0, 0.1,0.2, •••,0.9

P = A + (T - 2)a2 + 4(a2 - 1)* + | (a2 - 1)» - y - 4a2 sec""1 a

for    a2 = 1.0, 1.1, 1.2, •••, 2.0.

P is, of course, a continuous function. Discrete values of a2 are selected

for convenience in computation.
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These probabilities are, in order:

a2                      P a2 P

0.1 .234832 1.1 .985703
0.2 .409805 1.2 .992048
0.3 .549300 1.3 .995788
0.4 .662018 1.4 .997926
0.5 .752987 1.5 .999080
0.6 .825601 1.6 .999652
0.7 .882349 1.7 .999898
0.8 .925163 1.8 .999982
0.9 .955593 1.9 .999999
1.0 .974926 2.0 1.000000

In applying the test, sets of 3 digits are sufficient to represent one co-

ordinate; i.e., 12 digits are selected to give both coordinates of two points.

In a limited test, no significant difference was found when using two-digit

coordinates; in other words, the third digit has only a minor effect on the

square of the distance. The square of the distance is computed and punched

to one decimal place. The distribution of the results is compared to the

theoretical by the Chi-squared test. The calculation can be readily carried

out on any of the IBM calculators (602, 602A, 604). The distribution of the
results can be made in one run on a tabulator equipped with two digit

selectors.

This test was carried out on the random digit table of the University of

Wisconsin Computing Service (10,000 cards, each bearing 40 digits), making

six calculations of d2 on each card, selecting the columns to be read at

random. Results were tabulated for each 1000 cards (6000 d2's); the x2

analysis giving :

Thousand x2 p

1 17.085 .26
2 11.847 .62
3 18.585 .19
4 7.529 .91
5 7.762 .91
6 11.340 .66
7 14.162 .44
8 19.088 .17
9 8.370 .86

10                         9.747 .81

using 14 degrees of freedom, since the last 6 classes were lumped together.

Wiring diagrams for the d2 calculation on the 602A calculating punch

and the distribution of results on the 416 or 405 tabulator are available

on request.

„       ..    c    . Fred Gruenberger
Computing service

University of Wisconsin

Madison, Wisconsin

c   >u     m-   • Ti •     •♦ A- M. MarkSouthern Illinois university

Carbondale, Illinois

1 M. G. Kendall & B. Babington-Smith, R. Stat. Soc., Jn., v. 101, 1938, p. 157, and
Supplement, v. 6, 1939, p. 51.

2 Benjamin Williamson, Integral Calculus. 6th ed., London, 1891, p. 390.
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126. On the Calculation of the Square Root by Automatic Com-
puting Machines.—The calculation of the square root of a number on an

automatic computing machine not equipped with an internally controlled

square root order requires the application of some standard sub-program.

It is generally convenient to employ a well-known iterative procedure based

upon the formula

(1) £<»+» = §[/?<"> + N/R^l,

where i?(n) is the reth approximation to the square root R = ¿V*. The efficient

application of this procedure requires a systematic method of selecting a

zeroth approximation Rm to the square root R, and the number of iterations

required to calculate R to a specified number of significant figures depends

largely upon the accuracy of the zeroth approximation.

Let N be a. decimal number in the range 1 ^ N < 100. Define £ by

R - £ + N/10,

and let the zeroth approximation 7?<0) be given by

RV» = | + AT/io,

where \ is an average value of £. If the number N is distributed uniformly on

a logarithmic scale,1 we may take

X100
(M - N/i0)d log N = 1.759 ~ 2,

the one-digit approximation £ = 2 being sufficiently accurate. Therefore,

we let

(2) RM = 2 + N/10.

With (1), the first approximation i?(1) may be written

1 [N ION   1
rw=2[to + 2+ñ+To\-

This approximation differs from the root R by an amount A = Rlu — R,

where

R2 5R2

A = 1+Yo + W+Yo - R-

In the range 1 ^ R Sj 10, A is positive. It is equal to 0.25 at R = 1, de-
creases to a minimum of 0.038 at R = 1.957 • ■ • and is equal to 0.166 ■ • • at

R = 10. Therefore, the choice, (2), of a zeroth approximation leads to a

first approximation with at least one correct significant figure. The calcula-

tion of the square root by the application of (1) correct to eight significant

figures requires a maximum of five iterations and to sixteen significant figures

a maximum of six iterations.

If AT* is any positive number such that N* = 102kN, 1 ^ N < 100, the

zeroth approximation j?<°>* to the root R* = (N*)$ is

RW* = io*(2 + AT/10).
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This method has been applied in this laboratory to the formulation of a

square-root order on control panels for 10-digit arithmetic utilizing the IBM

Card-Controlled Electronic Calculator.

Robert W. Smith, Jr.
Stuart R. Brinkley, Jr.

Explosives and Physical

Sciences Division

U. S. Bureau of Mines

Pittsburgh, Pa.

1 It is reasonable to assume that dimensional numbers will be uniformly distributed on
a logarithmic scale if the choice of dimensional units is random. However, this point is
unimportant, since this result is comparatively insensitive to the nature of the averaging
process.

QUERIES

37. The Square Root Method for Linear Equations.—In a letter
dated 7 Feb. 1950 Mr. H. F. Rainsford of Colonial Surveys, Bushy Park,
Teddington, England, commenting on the article entitled "The square root

method for solving simultaneous linear equations" by J. Laderman in

MTAC, v. 3, p. 13-16, points out that this method was not "probably first
discovered by Banachiewicz in 1938" but goes back at least to Cholesky

whose treatment of the problem was described by Benoît1 in 1924. Can any

reader supply an earlier reference to this method?

1 Benoît, "Note sur une méthode de résolution des équations normales provenant de
l'application de la méthode des moindres carrés à un système d'équations linéaires en nombre
inférieur à celui des inconnues. Application de la méthode a la résolution d'un système define
d'équations linéaires," International Geodetic and Geophysical Union, Association of
Geodesy, Bulletin Géodésique, no. 2, 1924, p. 67-77. An English translation of this article has
been kindly supplied by Mr. Rainsford and is available in the UMT File.

QUERIES—REPLIES

47. Russian Bessel Function Tables (Q 25, v. 3, p. 66).—The volume

referred to in this Query, namely: Tablitsy Znachenil Funkfsiï Besselih ot

Mnimogo Argumenta, was not published until 1950. [It will be reviewed in

the next issue of MTAC.~\
R. C. Archibald

Brown University

Providence, R. I.


