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values (most tables, including the recent ones, give values of / for which

P(|w| = t) has selected values) have proceeded by steps of .1 for t, the two

principal ones being due to W. S. Gossett ("Student") \_Metron, v. 5, No. 3,

1925, p. 105-108], which in its main part gives values to 4D for n = 1(1)20
and / = 0(.1)6, and to Karl Pearson [Tables for statisticians and bio-

metricians, Part I, 3rd edition, London, 1930, p. 36]. The present tables

were calculated by linear interpolation for 0 = / = 6 and 1 = n = 20 from

Gossett's 1925 tables; for higher values of t and n, approximate methods

given by Gossett were used, psome spot checking by direct calculation of

the corresponding incomplete /3-functions for / = 1 (.01) 1.09 with n = 1 and

10 gave in 8 cases values differing from Gilbert's by 1 in the third decimal

place. For a more critical value n = 20, t = 0.5 a direct evaluation of the

incomplete ß integral confirmed Gilbert's value of 0.623. C. C. C]
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Technical Developments

Our contribution under this heading, appearing earlier in this issue, is

"The California Digital Computer," by Paul L. Morton.

Discussions

"Floating Decimal" Calculation on the IBM Card
Programmed Electronic Calculator

There is a wide variety of problems occurring in run-of-the-mill com-

puting in which it is extremely helpful to represent numbers x as x0-10p

where x0 has the same significant digits as x within the capacity of the

machine used, 1 ^ x0 < 10, and p is an integer. Three types we might

mention are:

1) Problems in which certain computed quantities have magnitudes

difficult to estimate.
2) Problems in which one or more quantities have such a wide range of

magnitude that no single fixing of the decimal point will suffice for

the entire range.

3) Problems in which the setup time involved in estimating magnitudes

is not justified by the saving in machine time made possible by fixed

decimal calculation.

For application of the IBM Card Programmed Electronic Calculator to such

problems, we have devised a calculator programming of the general-purpose

type based on the "floating decimal" representation of numbers. A brief

explanation of the way the machine is instructed will help in an understand-

ing of what follows.
The calculating unit (IBM 604) of the Card Programmed Electronic

Calculator is, for one step in the calculation, instructed to receive numbers
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A and B, to perform on them an operation fi{A, B), and to leave result C

where it can be used for further calculation or can be stored. The numbers

A, B, and C may have up to ten digits and a sign. The choice of operations

fi is determined to suit the needs of the group using the machine. The more

calculation one can put into one operation, the faster the C.P.E.C. can do

the problem. Hence, for a large problem, it is sensible to design the operations

fi with this in mind. A more versatile but slower setup is one in which the

same set of operations will suffice for any problem. It will rather obviously

include among its operations addition, subtraction, multiplication, and

division. What additional operations are included is up to the needs of the

group using the machine. The choice of operations is put into effect by wiring

of plugboards. Most operations are completely instructed by wiring of the

plugboards for the 604, but on occasion, it is useful to alter A or B before

they are delivered to the calculator or C as it comes from the calculator. This

implies special wiring on the tabulator plugboard.

In our programming of the C.P.E.C. for general-purpose floating decimal

calculation, we represent a number x by a ten-digit number X. In the repre-

sentation x = Xo-10p, we carry eight significant digits in Xo and allow p the

range — 50 ^ p ^ 49. The first eight digits of X are the digits of Xo. The
last two digits of X are those of p + 50. The sign of X is that of x0. Ex-

amples are:

x X
4.1752139-104 4175213954

-1.9920367 -10-20 -1992036730

The set of operations which is available in our setup is as follows :

f0(A,B) =A

MA,B) =A+B
MA,B) =A-B
MA,B) = A-B
MA,B) =A/B

MA, A) = VZ
MA.B) =\A\-B
MA,B) =\A\/B

Corresponding to i = 3, 4, 5, 6, 7 there is an operation fi such that/', = — /,-.

If no number is delivered to the calculator to be used as A or B in a

calculation, then the number already in that position is used. Because num-

bers delivered to storage cannot be read from storage for use as A or B

immediately, it is often convenient to store the result of a calculation in the

A or B position in the calculator before the next instructions are given.

For all operations except /o, we automatically store C in the A and B posi-

tions. For/o, C is stored in the B position, and the unused B in the A position.

Operations 6 and 7 are made possible by subsidiary wiring on the tabu-

lator plugboard which replaces A by — | A |. Hence, neither of these opera-

tions can make use of holding the previous result within the calculator in

A position.
Our floating decimal programming for the calculator relies heavily on

the program repeat feature of the 604 used in the C.P.E.C. This feature
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allows the machine, given a set of instructions, to repeat it several times in

one operation and, if desired, to use one subset of these instructions on one

time through a set, a different subset the next time. This use of program

repeat will make addition or subtraction take two or three times the normal

computing time if A and B are different by several orders of magnitude or

if C has a magnitude much smaller than that of A and B. As is to be expected,

the square root operation will always be slow. The other operations will

always be finished in the minimum time for a single operation.

Although it is rather expensive in selectors on the tabulator plugboard,

one can easily instruct the machine to make a reasonable (within a factor

of 4) guess at the qth root of a number which then is improved by iteration.

[-+S0I -50
The guess at the gth root of x0 ■ 10p is 3 • 10La      J       where [x] is the greatest

integer ^x.

The zero of our "floating decimal" setup cannot conveniently have all

its digits zero. An explanation of our addition will demonstrate the origin

of our representation. Suppose two numbers are added which differ in abso-

lute value only in the eighth significant digit but which are of opposite sign.

Then the digits of the result will lead off with zeros. In order to get the answer

back to standard representation, we examine the left-hand digit. If this

digit is zero, we shift the digits of the answer one position to the left and

decrease the calculated p by one. This shifting is continued until the left-

hand digit is non-zero. To enable the machine to stop shifting if all eight

digits of the answer are zero, we subtract one in the right-hand digit of the

answer each time a shift is made after the first. Thus on our machine,

xo-10p - xo-10p = -1.1111111  10p-9.

This shifting device gives an obvious means for converting fixed decimal

numbers of eight digits or less to floating decimal numbers. Suppose the

number of largest magnitude in a column of figures is x • 10p. We punch

x- 10p into the card with standard "floating decimal" representation and all

the other numbers with the same last two digits and the same decimal posi-

tion. Then transferring these numbers through the 604 will convert them

to standard "floating decimal" representation.

One additional operation which is useful only in the printing or punching

of final results has been included in our planning. If calculations made on

the C.P.E.C. are to be used on other IBM machines, it may be desirable to

convert results to the fixed decimal form. This procedure will often replace

key punching by reproducing. The board is so arranged that if A = x0A • 10Pa,

B = x0B- 10"a, pa ^ Pa, and the operations code is 2 and 7, then A will come

out on Channel C with exponent pB and the left-hand pB — Pa digits will

be zeros. The digits of x0B do not affect this rounding of x0A ; thus it is not

necessary to save an entire storage unit to carry pa-

When Channels A and B are transmitted to the 604, the significant digits

of Channel A are entered in General Storage 1 and 2, its exponent in Factor

Storage 4 ; the significant digits of Channel B are entered in Factor Storage

1 and 2, and its exponent in Factor Storage 3. The sign entries of FS 1 and 2

and GS 1 and 2 are wired from the channel sign hubs, in normal fashion.
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The sign wiring of FS 3 and FS 4 is unusual and important to the opera-

tion of the board. Its effect is that these two units always read true figures

with negative sign. Two pilot selectors are used. The first is picked up when-

ever a spread read-in card is at the third brushes. The second is picked up

immediately by the impulse from "Transfer and S.P. X Control Plus" hub

for counter 2A, which is wired to total on all cycles. FS 3 sign hub is wired

to common of one position of the first selector. The transferred hub of that

selector is wired to the 10 impulse emitter, and the normal hub is wired to

common of one position of the second selector. Transferred of the second

selector is wired to the 10 impulse emitter, normal is wired to the sign of

Channel B. FS 4 is wired similarly in the other position of each of the two

pilot selectors, with the final connection to sign of Channel A.

The significant digits of Channel C are in GS 3 and 4, and the exponent

in the two lowest order positions of the 604 counter. Channel C sign is to

be taken from GS 3 and 4.

The absolute value device is this: an x-punch is used to instruct the

machine; it picks up a pilot selector, which transfers the sign of GS 1 and 2

from Channel A sign hub and connects it to the sign of FS 4. Then GS 1

and 2 contains the negative of the absolute value of A.

The coding that has been used for this board is:

No Instruction Addition (/i)
2 Subtraction      (/2)

3 Multiplication (/3)

4 Division (/4)

4 and 5 Square Root (/6)
7 Transfer (/<,).

The effect of instruction 2 is just to substitute — B for B. Therefore we also

have:
2 and 3 Negative Multiplication (/',)
2 and 4 Negative Division (f\)
2, 4, and 5 Negative Square Root    (/'6).

If we use the x-punch for absolute value in addition to operation codes,

we have:

x, 2, and 3 (/6)

x, 2, and 4 (/7)

x and 3 (/'6)

x and 4 (/'?).

Calculate selectors 2, 3, 4, 5, and 7 may be picked up in the ordinary

way. Selector 1 is to be picked up whenever either operation code 3 or 4 is

present. Selector 6 is to be coupled to selector 5. Selector 8 is to be coupled

to selector 4.

On the programming chart, some positions are marked with an asterisk.

These are positions where the instruction must be selected according to

which operation is being performed. The selection is indicated in the "re-

marks" column. In that column the symbol 012, for instance, refers to

program 01, exit 2.
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The significance of the symbols at the program positions is determined

by the heading of the column in which they appear. For instance, GS 1 and 2

in the Exit 1 column means General Storage 1 and 2 read-out. The same

symbol in the Exit 2 column means General Storage 1 and 2 read-in. The

abbreviations R & R and RO refer to the counter. We have used the sym-

bol # to help distinguish between abbreviations for General Storage and

those for Group Suppression. Thus we have GS 3 and 4 (General Storage

3 and 4) and GS#4 (Group Suppression number 4). We have written mis-

cellaneous orders (Balance Test for Step Suppression, group suppression

controls, etc.) in Exit 3 where possible.

Donald B. MacMillan
Richard H. Stark

Box 1663

Los Alamos, New Mexico

APPENDICES

Suppression Types for General-Purpose Floating Decimal

Programming for C.P.E.C. 604
Types of

suppression:

I
II

III
IV
V

VI
VII

X
XI

XII
XIII
XIV

XV
XVI

XVII
XVIII

XIX
XX

XXI
XXII

XXIII
XXIV
XXV

Group suppress # 1

Group suppress #2

Group suppress #3

Group suppress #4

Suppress on negative balance.

Suppress on positive balance.

Suppress on non-zero balance.

Suppress if selector 5 is normal.

Suppress if selector 5 is up.

Suppress on negative balance; suppress if selector 5 is normal.

Suppress on negative balance; suppress if selector 1 is up.

Suppress on negative balance if selector 1 is normal; group suppress # 1

if selector 1 is up.
Group suppress # 1 if selector 4 is up.

Suppress on negative balance if selectors 1 and 5 are normal; suppress

on positive balance if selector 5 is up; group suppress # 1 if selector 1

is up and 5 is down.
Suppress if selector 4 is up.

Group suppress # 1 ; suppress if selector 5 is up.

Group suppress # 1 ; suppress if selector 4 is up.

Group suppress #4 if selector 5 is normal.

Group suppress # 1 ; suppress if selector 4 is normal.

Suppress on zero balance if selectors 3 and 7 are normal; suppress if

selector 3 is up and 7 is normal; group suppress # 1 if selector 7 is up.

Suppress on zero balance; suppress if selector 1 is up.

Suppress on negative balance; suppress if selector 7 is up.

Suppress if selector 5 is up; group suppress #2 if both selector 2 and

selector 7 are up.

Read Out
Exit 1

FS1&2
RO
R&R

4    FS3

Read In
Exit 2

CTR+*
MQ
FS1&2
CTR -*

PROGRAMMING CHART

Shift
Exit 3

GS #4 PU

Type
Sup.

II
XVII

II

012 CTR -

033 out of 6

Remarks

if sel 2 is up

if sel 3 is up
XVIII    042 CTR +    if sel 3 is up
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PROGRAMMING CHART— Continued

Read Out      Read In Shift
Exit 1 Exit 2 Exit 3

5    FS4* CTR+*

Type
Sup.

none      051 FS 3

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

R&R*

FS4
FS3
R&R
FS3
GS 1&2
GS1&2
FS 1&2
R&R
FS 1&2
Half adj.
R&R
FS3
Emit 1
R0
FS4

R&R*
MQ
GS 1&2
FS 1&2
GS 1 & 2*
Emit 1
GS3&4
MQ
Half adj.
R&R
Emit 5
FS 1&2
GS3&4
R0
Half adj.
R&R
Emit 5
Emit 1*
Emit 1
FS3
FS3
R&R
FS1&2
GS3&4
R0
R&R
MQ
MQ
FS 1 & 2*
FS 1 & 2*

R&R

FS1&2
FS3
FS3
FS1&2

Zero test

CTR -*        into 2

CTR +
FS4
FS3
CTR +
CTR+*
CTR +
GS 1 & 2*
FS 1 & 2*
CTR +

FS1&2
CTR +
CTR -
FS3
CTR -

CTR +
GS3&4
CTR+*
CTR4-*
CTR -
CTR -
CTR +
CTR +
GS #3 PU
GS3&4
MQ
x +
CTR+*
GS3&4

FS 1&2
FS3
CTR+*
CTR -
CTR +
x —
FS3
CTR -
CTR +
GS3&4

CTR -
CTR -
CTR +
CTR -

GS#3 DO
GS#2PU
GS1&2
FS4
CTR +
GS3&4

B.T.S.S.

into 4

*

out of 2

Zero test
into 6

into 2
into 3*

into 3*
into 3*
into 3
into 6
into 2
into 2
out of 3
into 3
GS#3 DO
into 4*
out of 3
into 3
out of 4
into 2
GS #4 DO
GS #2 DO

GS # 1 PU
GS#1 DO
out of 3
B.T.S.S.
into 5
into 5

B.T.S.S.
Prog. Rpt.

XXIII
XI

XIII
XIII
XIV

X
XVI
XII
XIV
XIV

XXIII
XXIII
XXIII
XXIII
XXIII
XXIII
XXIII
XXIII

XV
XXI
XIX

I
XXII
XX
XXI
XXI

I
X

none

X
III
XI

none

none

X
III

XIX
XI
X

none

VII
X
X

none

XXV
XXV

VI
V

none
VI

XXIV
XXIV

V
V

052 x +
053 B.T.S.S.

071 emit 5
072 CTR +

Remarks

if sel 7 is up and
sel 2 is down

if sel 5 is up
if sel 7 is down or

sel 2 is down
if sel 1 is up
if sel 3 is up

122 x + if sel 3 is up
123 into 5 if sel 4 is up
142 MQ if sel 3 is up
142 + if sel 4 is up
152 GS 3 & 4 if sel 4 is up
153 out of 6    if sel 3 is up

241 GS 3 & 4 if sel 4 is up
262 x + if sel 3 is up
263 into 1 if sel 1 is up
272 ■*■ if sel 4 is up
273 into 1 if sel 1 is up

281 R&R
283 into 1

362* +
363 into 1

411 FS4
412 x +

if sel 4 is up
if sel 1 is up

if sel 5 is up
if sel 5 is up

if sel 5 is up
if set 5 is up

453 out of 4    if sel 5 is up

521 GS 3 & 4 if sel 5 is up
531 GS 3 & 4 if sel 5 is up
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OIAGRAM   OF   THE   CALCULATOR
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•©
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• -Bal
• XXIV
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•®
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£

• ©
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N
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Notes on Numerical A nalysis—4

Relaxation and Step-by-Step Methods

Classical methods for the numerical solution of ordinary differential

equations are all of the step-by-step type, directly applicable only to equa-

tions with conditions specified at one end of the range of integration. The

comparatively recent development of relaxation methods provides a new

technique for the solution of differential equations for which conditions are

given at two distinct points in the range of integration. We shall describe

a combination of the two methods which has proved effective in certain

cases, for instance, when the behavior of the solution is exponential in one

part of the range and oscillatory in another.

To fix ideas consider a second-order equation, from which the first
derivative has been removed, of the form

(1) y"+fy =

where / and g are functions only of the independent variable x. We can

establish a finite-difference equation to replace (1), connecting values of y

at three adjacent pivotal points, separated by an interval h, of the form

(2) yT+l + yr_j - (2 - ¥fT)yT - h2gr + A(yr) = 0.
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Here, A, the difference-correction, is given by

(3) A = - 54/12 + ô6/°0 + ••••

(We could use a more powerful three term formula, involving a much smaller

A, but these equations are adequate for our present illustrative purpose.)

An equation of type (2) is to be satisfied at every pivotal point in the

range of integration. These equations, moreover, are quite independent of

the initial or boundary conditions of the problem, but the latter will deter-

mine the method by which such equations are solved.

If the conditions are of the boundary-value type, we shall commonly

have specified values yo and y„ at the two ends of the range of integration.

With initial neglect of A, we can therefore solve equations (2) as a set of

linear simultaneous equations.

If the conditions are of the initial-value type, we shall be given, or can

find fairly easily, two adjacent values y0 and yx at the start of the range.

Again, neglecting A, we can in this case solve equations (2) by recurrence,

obtaining in succession values of y2, ys, •••, etc.

In each case the approximate solution so obtained can be differenced,

an approximation to A calculated at every point, and with these values

inserted as additional terms in equations (2), the respective processes can

be repeated to obtain better approximate solutions y. This cycle is carried

on until the equations (2) and (3) are accurately satisfied.

Now the linear equations are most easily solved when the coefficients

are dominant in the principal diagonal. The use of iteration or relaxation

methods is then particularly convenient, and the results are relatively free

from error. This dominant diagonal is present whenever the solution is of

the exponential type, when / is negative. If the solutions are oscillatory,

with / positive, the linear equations are relatively ill-conditioned and their

solution much more difficult and less precise.

The recurrence method has precisely the opposite features. In exponen-

tial regions there is an uncontrollable growth of error; in oscillatory regions

the error is comparatively negligible.

We would therefore like to use relaxation in exponential regions, recur-

rence in oscillatory regions. In some problems of practical interest the solu-

tion has different forms in different regions, and sometimes the given condi-

tions allow us to use the appropriate methods.

Consider, for example, an equation of the form

(4) y" +A(x)y = 0,        y(0) = 0,

in which A(x) is large and negative near the origin, later increasing, passing

through zero, and having an asymptotic value of say unity. The asymptotic

solution, for large x, then has the form

y ~ a sin x + b cos x,

and the problem is to determine the ratio a/b.

The solution begins by increasing rapidly, then decreases and begins to

oscillate, as shown in figure 1.

The finite-difference expression for (4) is given by

(5) yr+i + yr-i - (2 - h*Ar)yr + A(yr) = 0.
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Now the coefficient of yr is initially greater than 2 in absolute value, and

begins to be less than 2 when A (x) passes through its zero. Let the point at

which this occurs be called xc. The solution is exponential for x < xc, oscilla-

tory for x > xc.

Equation (4) is homogeneous in y, so that y can be given any arbitrary

value at one particular point other than the origin. Fix the value y = yc

at x = xc. For x < xc we then have a boundary-value problem easily soluble

o xc

Fig. 1.

by relaxation methods. Let us by this means obtain the first approximation,

with A neglected, in this range. This solution provides at least two starting

values, at xc and xc-h, from which we can carry forward the solution by

recurrence into the oscillatory region.

Since the same equation (5) has been used throughout, the approximation

so obtained is "smooth" throughout the entire range. We can therefore

difference and calculate A everywhere. A better solution can now be obtained

in the exponential region by relaxation. The improved value at xc-h, together

with the given value at xc and the difference-corrections, enable us again to

carry this better approximation into the oscillatory region, as far as neces-

sary. The process can be repeated until equations (5) are everywhere

satisfied.
There is here a nice computational point. The exponential region is com-

pletely self-contained, and the final solution, with A included, could be

obtained before ever proceeding into the oscillatory region. If this were done,

however, the accurate exponential solution would not fit well with the first

approximate oscillatory solution: there would be some sort of discontinuity

at xc, the differences would not be smooth, and the calculation of A uncertain.

For this reason the application of A is deliberately deferred until it can be

effected smoothly over the whole range.

The same technique will help us to throw light on a matter hitherto

obscure in relaxation. From a first approximation to the solution of a

boundary-value problem the difference correction is not immediately cal-

culable near the ends of the range, since central differences do not exist there.

The first approximation, however, enables us to extend this approximate

solution, by recurrence methods, outside the chosen range in both directions

(provided, of course, that the function exists outside this range). We can

then compute A not only inside, but also at points outside the range. The

internal values enable us to improve our internal solution, and these new

internal values, together with the external A's, allow us to obtain a new solu-

tion externally, to the same degree of approximation as the new internal

values. The process is repeated until there is no further correction. The

number of values determined outside the range depends, of course, on the

order of significant differences in A.
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If the solution is everywhere of exponential type, the external recurrence

may not be very accurate, the error at a point growing with its distance from

the particular end point. Since these values are required, however, only for

the computation of A, which has small coefficients multiplying the differ-

ences, some error can be tolerated.

L. Fox
NBSCL and
National Physical Laboratory

Teddington, England
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December 1950, 5 p.

The present status of the following digital computer projects is treated

briefly in this number.

1. NRL Computer (NAREC)
2. Moore School Automatic Computer (MSAC)

3. Naval Proving Ground Calculators

4. SEAC (National Bureau of Standards Eastern Automatic Computer)

5. Aberdeen Proving Ground Computers:

Coupling of IBM Relay Calculators
The ENIAC

6. SWAC (National Bureau of Standards Western Automatic Com-

puter)

7. The Institute for Advanced Study Computer

8. Project Whirlwind
9. The ACE Pilot Model, Teddington, England

10. Data Handling and Conversion Equipment:

Digital Reader

Digital Data Recording System

Analog Digital Converter.

News

American Statistical Association.—On Thursday December 28, 1950, at a meeting of

the Association in Chicago, a round table discussion was held which had as its topic, "What

can high-speed electronic computing equipment do for and to statistics?" The moderator

was William G. Madow, University of Illinois. Mr. S. N. Alexander, NBS, discussed the

subject from the viewpoint of an electronic engineer while Mr. B. Schreiner, A. C. Nielsen

Company, talked about the problem as seen by an expert user. A discussion followed by H.

C. Grieves, Bureau of the Census, and John J. Finelli, Metropolitan Life Insurance Co.

Organizations joining in the meeting were the Psychometric Society, the Institute of Mathe-

matical Statistics, and the Association for Computing Machinery.
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Centre National de la Recherche Scientifique.—An international colloquium on "Mod-

ern calculating machines and the human mind" was held at the CNRS on January 8 through

13th at Paris. The program for the meeting was as follows:

First Session, Recent Technical Progress in     Louis DE Broglie, Institut Blaise Pascal,

Large-Scale Calculating Machines Secretary of Academy of Sciences, Chair-

"The Mark II, III, IV Machines"

"A magnetic automatic calculating ma-

chine"

"Development of electronic digital com-

puters at the National Bureau of Stand-

ards"

"Research activities of the National Phys-

ical Laboratory"

"The Institut Blaise Pascal Machine"

"Mathematical machines in Sweden"

"Research in progress at the University of

Brussels"

"Short-cut multiplication in a parallel-deci-

mal automatic calculating machine"

Second Session, Applications of Mathematical

and Scientific Problems to Large-Scale Cal-

culating Machines

"Numerical integration of the wave equa-

tion"

"Explanation of numerical methods of inte-

gration of systems of linear partial differ-

ential equations and the results obtained"

"Different problems a machine can solve"

"Les erreurs de chute dans les calculs sys-

tématiques"

"Operational experience with the EDSAC"

Third Session, Large-Scale Calculating Ma-

chinery and the Logic and Physiology of the

Nervous System

"A presentation of the homeostat"

"Some new analogies between the structure

of computers and  the structure of the

brain"

"Large-scale calculating machines and the

physiology of the nervous system"

"Mechanical realization of models of the

brain structure; presentation of artificial

animals"

"Work in Sweden"

H. H. Aiken, Director of the Computation

Laboratory, Harvard University

A. D. Booth, Birkbeck College, University

of London

E. W. Cannon, National Bureau of Stand-

ards, Washington, D. C.

E. M. Colebrook, National Physical Labo-

ratory, Teddington, England

L. Couffignal, Director of the Computer

Laboratory, Institut Blaise Pascal

Stig Ekeloff, Chalmers Tekniska Hög-

skola, Göteborg

P. Germain, Université Libre, Brussels

E. J. Petherick, S. H. Hollingdale,

Royal Aircraft Establishment, Farn-

borough, Hants, England

M. Caquot, Institut Blaise Pascal, Chair-

man

F. H. van den Düngen, University of

Brussels

M. Picone, University of Rome

A. M. Uttley, Telecommunications Re-

search Establishment, Worcester, Eng-

land

A. van Wijngaarden, Mathematische Cen-

trum, Amsterdam

M. V. Wilkes, Director, University Mathe-

matical Laboratory, Cambridge

L. Lapicque, Institut Blaise Pascal, Chair-

man

W. R. Ashby, Department of Research,

Barnhouse, England

L. Couffignal, Institut Blaise Pascal, Di-

rector, Laboratoire de Calcul Mécanique

H.   Gastaut,   Faculté   de   Médecine   de

Marseille

W.  Grey  Walter,   Burden   Neurological

Institute

G. Kjellbörg, Tekniska Högskolan, Stock-

holm



98 automatic computing machinery

Discussion

Discussion

"Developments   in   automatic   computing

machinery in the Spanish school"

"Présentation  des  appareils  de Leonardo

Torrès-Quevedo :

1. le joueur d'échecs automatique

2. le télékine, premier appareil con-

struit pour le radio-guidage des

bateaux

3. les fusées logarithmiques de la ma-

chine à résoudre les équations log-

arithmiques"

Computer Experience with Electron Tubes

"Review of AIEE conference on electron

tubes for instrumentation and indus-

trial use"

"Experience with receiving-type vacuum

tubes on the Whirlwind Computer

Project"

"Electron tube experience at IBM"

"Performance  of electron  tubes  in  the

ENIAC"
Electron Tube Problems

"Design and operation of tubes for long

life"
"The JETEC approach to the tube relia-

bility problem"

"Cathode inter-face impedance and its

effects in aged vacuum tubes"

"Cathode impedance and tube failure"

"6SN7WGE and 6AN5; mutual conduct-

ance dispersion and the effect of low

duty cycle operation on long life per-

formance"

"Open  discussion  in  improved  electron

tubes for computers"

Special Purpose Computer Tubes

"A stable binary electrostatic storage

system"

"Recent experiences with the selective

electrostatic memory tube"

"The MIT storage tube"

"The development of the Rogers Addi-

tron"

"A proposal for a binary adder tube util-

izing beam deflection principles"

"Special cold cathode discharge tube for

counting and switching applications"

R. Lorente de No, Laboratories of the

Rockefeller Institute

W. McCulloch

P.    Puig-Adam,    Academy    of    Sciences,

Madrid
G. Torrès-Quevedo, Ingénieur des Ponts

et Chaussées de Madrid

Mina Rees, ONR, Chairman

W. R. Clark, Leeds and Northrup Co.

E. S. Rich, MIT

J. A. Goetz and A. W. Brooke, IBM
Wright E. Erion and Homer W. Spence,

Aberdeen Proving Ground, Maryland

S. N. Alexander, NBS, Chairman

J. O. McNally, BTL

J.  R. Steen, Sylvania Electric Products,

Inc.

H. B. Frost, MIT

L. S. Nergaard, RCA
I. Levy, Raytheon Manufacturing Co.

A. L. Samuel, IBM, Chairman

A. M. Clogston, BTL

J. Rajchman, RCA

P. Youtz, MIT
T. Van Dyk, Rogers Majestic, LTD.

D. H. Gridley, NRL

M. W. Wallace and J. Heney, Federal

Telecommunication Laboratories

Panel on Electron Tubes.—The Conference on Electron Tubes for Computers was

held in Atlantic City on December 11th and 12th, 1950, under the joint sponsorship of the

AIEE and the IRE in collaboration with the Panel. The program was as follows:
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"A decimal counting tube"

"New improvements and applications in

Remtron counter tube"

Tube Manufacture and Crystal Diode Experi-

ence

"Design and manufacture of electron

tubes for electronic computer service"

"Problems in the manufacture of special

tubes for computer usage"

"Development of the 7AK7"

"Some problems involved in the manu-

facture of germanium diodes"

"Experience with germanium diodes in the

SEAC program"

"Crystal   diode   life   experience   in   the

Whirlwind Computer circuits"

Williams Type Storage

"Tube experience in the SVVAC"

"The SEAC memory using Williams

storage"

"The selection of cathode-ray tubes for

Williams storage"

"Methods of testing cathode-ray tubes

for service in Williams storage systems"

"Theory of storage in cathode-ray tubes"

"Progress report on the electron mecha-

nism on the Williams storage tech-

nique"

"Space charge effects in Williams storage

tube"

T. R. Köhler, Philips Laboratories

Frank J. Cooke, Remington Rand Corp.

J.   G.   Brainerd,   University  of  Pennsyl-

vania, Chairman

R. E. Higgs and H. E. Stumman, RCA

R. L McCormack, Raytheon Manufactur-

ing Co.

R. W. Slinkman, Sylvania Electric Prod-

ucts, Inc.

N. DeWolff, General Electric Co.

H. Wright, NBS

H. B. Frost, MIT

J.   H.   Bigelow,   Institute   for  Advanced

Study, Chairman

H. D. Huskey, NBS

W. W. Davis, NBS

J.  H.  Pomerene,  Institute for Advanced

Study
D. Friedman, NBS

J. Kates, University of Toronto

A. W. Holt, NBS

L. Brillouin, IBM

OTHER AIDS TO COMPUTATION

A New Differentiating Machine

The first step in the design of a differentiating machine is the selection

of a mechanical analogue for the derivative of a plotted function. The in-

corporation of this mechanical differential ratio into a machine that will

draw the derived curve of a plotted function will follow with the use of the

proper linkages, gears, etc., that will transfer the relative value of this

dy . .
mechanical -r~ to a writing pen for tracing the derived curve.

The most common type of differentiating machine that has been built

uses a tangent line analogue based on the geometric concept of the deriva-

tive. The differentiating machine built in 1904 by J. E. Murray1 employs

this tangent line analogue in the form of two dots on a celluloid plate. So

long as the dots remain on the curve to be differentiated, the chord connect-

ing them is approximately parallel to the tangent to the curve at the mid

point between the dots, then by a system of connecting linkages, a writing

pen is caused to draw the derived curve.


