
Monte Carlo Matrix Calculation with
Punched Card Machines

Forsythe & Liebler have described matrix inversion by a Monte Carlo
method [MTAC, v. 4, p. 127]. While they state that the method is "best
suited for a human computer with a table of random digits and no calcu-

lating machine," the principle has been adapted for use with punched card

machines. The method has been extended to finding powers of a matrix.

While an IBM 405 tabulator was used in this work, there is no reason why

a newer machine cannot be used.

The class of matrices B = (6,,) that may be inverted by this method

is limited to those in which

(1) the largest latent root of A* = (an*) is less than unity, where a,-,-* is the

absolute value of an = 5,-,- — &„■ and
(2) the sum of the elements in any row of A* is less than unity

In certain cases these restrictions may be removed.

In this modification of the method of Forsythe and Liebler, the illus-

trative urns containing numbered balls are replaced by a group of punched

cards. Each card is divided into two principal fields: a randomizing field

consisting of 30 to 50 random digits and a playing field prepared for each

matrix as described below. Each of the n card columns of the playing field

of the deck corresponds to one of the urns. Each of the n different digits

punched in the card column corresponds to the numbered balls in that urn.

An x-punch in a card column corresponds to a "stop ball" in the urns of

the original description. The deck of cards is treated as a unit and is so

prepared that the probability of a j appearing in the ¿th card column is pi¡.

In the case where A has both positive and negative elements, a value of — 1

is attached to each draw corresponding to a negative element, +1 to all

others. The negative value is indicated by a 12 punch appearing in the

corresponding card column above the row punch.

In terms of the original reference, n games are played simultaneously

to yield one row of the desired inverse B~l. The passage of each card through

the machine constitutes one draw in the game.1 The machine is wired so

that the original gambling procedure is followed. Instructed by a digit

emitter, the machine reads the card column corresponding to the tth row.

The digit punched in that column activates the mechanism which selects

one column of the next card for reading. The digit in each column selected

causes the reading of the corresponding column in the following card. This

procedure is continued until an x is read. The column from which the x

was read scores ±1, all others score zero. As the values are to be multiplied

together, the score is —1 if an odd number of negative draws was made,

otherwise the score is +1. A designated counter keeps count of the total

games played. The machine does not stop after each game, but starts anew

on the card following the x card, again instructed by the digit emitter.

After the entire deck of cards passes through, a total is taken and the

machine prints total draws, total games and net score for each of the n
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games. The actual elements of the inverse matrix are obtained by dividing

by the product of the stop probability times the number of games played.

If the stop, probability can be taken as 0.1, and the number of games as an

exact power of 10, the machine will actually list the elements found. By

playing successively, starting with i = 1 and continuing through i = w, the

entire inverse will be listed with the elements in their correct positions.

By a simple modification, powers of certain matrices may be found by

playing a similar Monte Carlo game. In this case, the stop probabilities

are no longer used to terminate each game. Instead, exactly r + 1 draws

are made and the scoring is performed as before. As all possible routes

from i toj consisting of exactly r steps will be covered in a large number of

games, this is tantamount to raising the matrix to the rth power. The

restriction on the size of the largest latent root no longer applies here, but
n

it is required that 2^a¿> = 1- The instruction to score every (r + l)st draw
i = i

may be given the machine by interspersing control cards by means of a

counting collator or by sequencing using interlocked  selector relays  as

described below.
The order of matrices that may be raised to powers or inverted depends

on the selector capacity of the machine. For general functions, one single-

position selector, one three-position selector and one ten-position selector

are required as well as two digit-selectors. For matrices of the wth order,

n two-position selectors and n single-position selectors are also needed.

The advantages inherent in this method are:

1. It may be used with a common machine present in nearly all punched

card equipped installations.

2. The actual working procedure is far simpler than for any previously

reported matrix inversion method.

3. Approximate inverses may be obtained rapidly. The accuracy of a

good approximation to an inverse may be easily improved.2

4. Using a machine with large selector capacity,3 approximate inverses

and powers may be obtained for high order matrices. In going from a

matrix of the nth order to one of the (2n)th order, twice as many cards

should go through the machine in twice the number of passes. Thus, as

originally stated, the number of operations is proportional to the second

instead of the third power of the order, as is otherwise the case.

5. The process of finding all powers from 2 to r is an exceedingly simple

one. It should be useful in evaluation of latent roots and vectors.

Example 1—Inversion of a seventh order symmetrical matrix

B =

-.1

.7
-.1
-.1
-.1
-.1
^.1

-.1
-.1
-.1

.7
-.1
-.1
-.1

-.1
-.1
-.1
-.1
-.1

.7
-.1
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.3

.1

.1

B-1 = 12.536

B-1

.1

.3

.1

.1

.1

.3

.1

.1

.1
etc.

B~l   =12.67       1.33       1.66

.1

.1

.1

1.551.33
etc.

(90 games per element)

1.224       1.288       1.275       1.263
etc.

(784 games per element)

1.00

.1

.1

.1

1.331

Pi =
.1
.1
.1

etc.

12.500       1.250 1.250       1.250       1.250
etc.

(calculated values)

1.263       1.2631

1.250 1.2501

Example 2—A seventh order symmetrical matrix raised to the seventh power.

A" =

.88

.02

.02

.02

.02

.02

.02

.440

.121

.111

.4388

.4410

.02

.88

.02

.02

.02

.02

.02

.120

.427

.079

.0933

.0932

.02

.02

.88

.02

.02

.02

.02

.02

.02

.02

.88

.02

.02

.02

.02

.02

.02

.02

.88

.02

.02

.02

.02

.02

.02

.02

.88

.02

.088 .072 .080

.096 .081 .081

.428 .103 .095
etc.

(125 games per element)

.02

.02

.02

.02

.02

.02

.88

.088

.096

.087

.112

.096

.095

.0954 .0946.0952
etc.

(825 games per element)

.0932 .0932
etc.

(calculated values)

.0932

.0946

.0932

.09461

.09321

Example 3—A seventh order nonsymmetrical matrix raised to the sixth

power.

.02

.02

.02

.02

.02

.02

.02

.88

.02

.02

.02

.02

.02

.02

.02

.88

.02

.02

.02
-.02

.02

.02

.02

.88

.02

.02

.02

.02

.02

.02

.02

.88

.02

.02

.02

.02

.02

.02

.02

.02

.88

.02

.02

.02

.02

.02

.88
-.02
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A*=\    .4683     .0739     .0880      .0704     .0704 -.0422 -.0523)
(568 games per element)

4782      .0736
0736     .4782

.0736

.0736
.0736
.0736

.0736 -.0025

.0736 -.0025

-.0025
-.0025

0025 -.0025 -.0025 -.0025 -.0025 -.0025     .4782
(calculated values)

Details of the procedure.—Card Preparation.

A. Random numbers may be keypunched from standard tables4 or

pseudo-random numbers may be produced \_MTAC, v. 5, p. 4].

B. Preparation of a group of cards correctly punched in the playing

field may be accomplished as follows.

1. Prepare the needed table of probabilities by listing the absolute values

of the matrix with rows and columns transposed. (To prepare cards for

matrix inversion, include the stop probabilities as the final row in the table.)

The probabilities in each column (including stop probabilities if present)

should add to unity.
2. An effective, but tedious, procedure for preparing the playing field

for a single card column would be to partition the deck by actual count

into n (or n + 1 in the case of inversion) groups each containing pn% of

the card count. For each group the appropriate value of j would be gang

punched into the card column representing i. A 12-punch is included when

a value of —1 is attached to the probability and an x-punch represents

the stop cards.

3. This may also be done by preparing a table of accumulated proba-

bilities, changing this to a table of turning points and collating with cards

sorted on a d digit random field when the probabilities are given to d signifi-

cant figures. The values of j as well as any x or 12 punches are interspersed

gang-punched onto the playing field of the random number cards.

Example of Preparation of Table of Turning Points for One Column in the

Inversion of a Fourth Order Matrix

J

1
2
3
4

Pi

Column of
Probabilities

.323
-.076

.458

.109

.034

Accumulated

Probabilities

.323

.399

.857

.966
1.000

Turning

Points

000
.323
.399
.857
.966

3
1
2*
3
4
x

* (also 12 punch)
Keypunch
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4. Using either of these procedures, the cards should be sorted on several

random fields between the preparation of successive columns of the playing

field.

Performing the Calculation

Place the designated wire in position 1 of digit selector 2. Pass entire

deck of cards through the tabulator. Press hand key for total. Successively

pass cards through with wire in digit selector positions 2 to n.

Machine Wiring

1. Counters. Use n + 2 counter groups. Read card count into all groups.

Add and subtract hubs go to selector F (NX and X, respectively), from C

of that selector, through the delayed selectors and the entry selector to

"plug to C." Net balance and clear all counters on final total, emitting an

asterisk next to negative totals. One counter group is for card count; another

counts games played (plug to C through entry selector).

2. Reading Selectors, n two-position selectors are used. Each X goes to

its corresponding upper brush position in the playing field. C is common

and leads to the entry selector. The X in the other position goes to the

D-PU of the corresponding delayed selector. The C is again common and

leads to a digit of DS 2. (UCI goes to DSC 2, making DS 2 a digit emitter.)
The PU of each selector is through the corresponding hub of DS 1.

3. Delayed Selectors. These are picked up by a digit impulse passing

into the C of all reading selectors and through the X positions to the D-PU

of the corresponding selector. Thus, delayed selector 3 picks up one cycle

after reading selector 3 picks up. (This is done so that the machine can

store the number of the "winning" digit.) The delayed selectors carry a

common "plug to C" on their C hubs: the X hubs lead to the corresponding

C positions in selector F.

4. Entry Selector. Three-positions picked up by the first card or by an

11 from Digit Selector 1. One position carries a "plug to C" impulse to the

counter which records the number of games played and to the C of the

delayed selectors. A second is used as a drop-out for the negative impulse

counter. The third selects either the output of the reading selector bank-NX

or an emitted digit from DS 2 (which is impulsed by UCI)-X to DSC 1.
5. Negative Impulse Counter. To distinguish an odd from an even number

of 12 impulses, the selector picks up on the first negative impulse, drops

out on the second, picks up on the third, etc. An 11 emitted by DS 2 passes

through the entry selector (C to NX), through a special drop-out selector

(C to NX), through one position of Selector F (C to X) to the X-PU of
Selector F. The 12 position in DS 1 is wired through Selector F (C to N)

to the D-PU of that selector. The corresponding X position carries the 12

impulse to the special drop-out selector. By this means, Selector F remains

picked up after odd 12's, and drops out on all even 12's and as each game

starts.
6. Sequencing Circuit. By passing an x through one distributor (C to X)

to the X-PU of the next distributor, a chain of r + 1 distributors may be

linked together. If the (r + l)st distributor picks up the entry selector and
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starts the chain over again, every (r -f- l)st draw will be scored. This circuit

is used for raising matrices to powers without employing control cards.

Ascher Opler
Dow Chemical Co.

Pittsburg, Calif.

1 This is actually sampling without replacement and therefore does not strictly conform
to the Markov process originally described. However, if the ratio of the number of punched
cards to the order of the matrix is very large, nonreplacement has negligible effect on the
remaining transition probabilities until the exhaustion of the deck approaches.

2 H. Hotelling, "Some new methods in matrix calculation," Ann. Math. Slat. v. 14,
1943, p. 1-34.

3 The IBM 101 statistical machine should be able to invert matrices up to the 30th
order because of its selector capacity.

4 Random numbers on punched cards are available from the Rand Corp., Santa Monica,
Calif.

Computing Logical Truth with the California
Digital Computer

1. Introduction. A problem which occasionally arises and in quite sur-

prisingly diverse fields of endeavor is the computation of a truth table for

a sentence built up of simple sentences connected by the simple sentential

connectives. The problem is to find the truth value of the complete sentence

for all combinations of truth values for the component sentences. If the

complete sentence is a combination of n two-valued sentences, then it itself

is two-valued and 2" possible conditions must be considered. Thus if the

number of different component sentences is at all large, an extremely

tedious computation is necessary.

Since the computation itself is performed in a routine manner, the

possibility of using a high-speed, automatic computer to carry through the

details suggests itself. Indeed, a machine for this purpose (the Kalin-

Burkhart Logical-Truth Calculator) has already been built.1 It seems

desirable, however, to investigate the possibility of solving these problems

using general-purpose, digital computers as many of these will be in opera-

tion within the next few years. With this in mind, a program for truth-table

calculation is worked out in the following for the California Digital Com-

puter [MTAC, v. 5, p. 57-61]. The general plan should be applicable to
any digital computer.

Most problem-solving programs require three basic routines. First the

solution of the problem with a given set of data, second storing the result

at the proper location in the memory, and third altering the data as required

for the next computation. These will be discussed in subsequent sections.

Since the details of a computation program depend to a considerable

extent on the characteristics of the computer for which it is developed, a

brief description of the operations needed and available in the California

Digital Computer (commonly called Caldic) will be presented. Other opera-

tions than those described are also available, but the discussion will not be

complicated by describing them.

The program and data are given to the machine in the form of holes

punched in a standard teletype tape. Results are printed out of the machine

on a similar tape. Numerical data and results are in the form of decimal

numbers which are used by the machine in a binary-coded form. The fact


