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Proceeding in the manner described in the foregoing sections for the

case of a single differential equation, and making use of the abbreviations

R" = Dnfz,    r" = D'g,    <rn s D"gy,    p» = D*g„    r = [t]2

one obtains for «i = &s — yv(x0, yw, y2o)/120 the expression

1440ei = (T*/2) - 2(fyT* + /.r») + 3[T2(f2 + fzgy) + r2(fyfz + ¿g.)]

- 3(ST2 + i?r2) + 12[5(r/„ + rfz) + R(Tgy + Tg.)l

- 6lT(Sfy + cfz) + r(Rfy + p/,)] + 3(TS* + ri?2)
+ 9(P/W + 2Trfyz + */»)

- 12[r(/„» + /rfy(2/„ + g.)) + rfz(f2 + /yg2 + fzgy)-]

- 15/,,(r2g + r2/).

Assumptions similar to (14) now permit one to get a bound for «, h5.

If, namely, near (x0,, yi0, y&),

\fi\ < M,        \d"+"+rfi/dx"yi''y2r\ < Lp+"+r/Mt+'-1

for 0 < p + q + r < 4, it is found that

(19) |JB<| < (973/720)ML*h\

For the differential equation y" — y = 1, y(0) = 0, y'(0) = 1, which is
equivalent to the system y{ = y2, y2 = 1 + yu yi(0) = 0, y2(0) = 1, the

solution is y = ex - 1. Thus y(0.1) = .1051709. With h = 0.1, R.K.'s
method gives y(0.1) = .1051707, whence E = 2-10-7. In the region 0 < x
< 0.1, 0 < yi < 0.11, 0 < y2 < 1.11; above estimate (19) asserts that

\Ei\ < 1.5-10-5.
Max Lotkin

Ballistic Research Laboratories
Aberdeen Proving Ground, Md.

1 L. Bieberbach, Theorie der Differentialgleichungen. New York, 1944, p. 54.
2 C. Runge & H. König, Vorlesungen über numerisches Rechnen. Berlin, 1924.
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878[F].—H. Chatland & H. Davenport, "Euclid's algorithm in real quad-
ratic fields," Canadian Jn. Math., v. 2, 1950, p. 289-296.

The tables in this paper are rather special and are used to prove a result

of Inkeri1 that the field k(m*) is not Euclidean for

m = 193,241,313,337,457,601.

There are six tables corresponding to these values of m. Each gives a com-

plete period of a periodic algorithm showing certain inequalities which

establish the non-existence of Euclid's algorithm in each field considered.

1 K.  Inkeri,  "Über den Euklidischen Algorithmus in quadratischen Zahlkörpern,"
Acad. Sei. Fennicae, Annales, v. 41, 1947, p. 5-34.

879[F].—A. Gloden, "Factorisation de nombres A™ + 1," Euclides, v. 10,

1950, p. 157.
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A small table gives the complete factorization of Nu + 1 for A7 = 2(1)13,

21,27,32 with references to authors. Two additional entries, for N = 16 and

N = 64, might have been given :

1616+ 1 = 274177-67280421310721
6416+ 1 = 641-6700417-18446744069414584321.

The first of these is the historic factorization by Landry of the 6-th Fermât

number. For the second see Amer. Math. Soc. Bull., v. 36, 1936, p. 849.
A third factorization corresponding to N = 36

3616+ 1 = 2753-145601-19854979505843329

has been announced by Hoppenot and Kraitchik {Sphinx, v. 4, 1934,

p. 47] but no really satisfactory proof of the primality of the largest factor

has been given.

D. H. L.

880[F].—Helmut Hasse, Arithmetische Bestimmung von Grundeinheit und

Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörper. Akad.

Wissensch., Berlin, mat. nat. KL, Abhandlungen, 1948, n. 2, Berlin, 1950.
vii + 95 p., 29.5 X 21 cm. 14 marks.

This paper contains tables for the fundamental units, the cyclotomic

units and the class numbers of all cyclic cubic and all real cyclic biquadratic

fields with conductor ^ 100.
A systematic method is developed for finding these quantities generally

in such fields ; it is applicable to the case of non-real cyclic biquadratic fields.

The work of H. Bergström1 is used and generalized.

The analytic expression for the class number depends on the index of

the system of cyclotomic units with respect to the system of all units in the

maximum real subfield. For real fields this is the field itself. A cyclic cubic

field is always real and has two fundamental units, a cyclic biquadratic

field has three or one according as it is real or imaginary. It is shown that,

for cubic fields, there exists a fundamental unit E such that —1 and the

conjugates of E generate all the units. For real biquadratic fields the ex-

istence of a relative fundamental unit E is shown which has relative norm

±1 with respect to the quadratic subfield (which is always real). The

conjugates of E, the fundamental unit of the quadratic subfield and — 1

generate a subgroup of index 1 or 2 in the complete group of units. In both

cases E is characterized by a minimum property of its coordinates with

respect to the integral base, just as the fundamental unit of a real quadratic

field corresponds to the smallest positive solution of the Pellian equation.

The integral base is chosen in a special way by using ideas of class field

theory. This is done in order to determine it in an invariant way. This

can be regarded as a generalization of the fact that in the quadratic case

the discriminant determines the base.
O. Taussky

NBS

1H. Bergström, "Die Klassenzahlformel für reelle quadratische Zahlkörper mit
zusammengesetzter Diskriminante als Produkt verallgemeinerter Gaussscher Summen,"
Jn. reine angew. Math., v. 186, 1944, p. 91-115.



RECENT MATHEMATICAL TABLES 135

881 [F].—E. H. Neville, editor, The Farey Series of Order 1025, Displaying
Solutions of the Diophantine Equation bx — ay = 1. Designed and com-

piled by E. H. N. {Royal Society Mathematical Tables, volume 1).
Cambridge, University Press; published for the Royal Society, 1950.

xxxii, 405 p. 21.5 X 28 cm. There is also a loose card, 20.2 X 27.2 cm.,
giving the complete factorization, on one side of the numbers 1-549,

and on the other of 500-1049. £5 s5. Cambridge University Press,
$18.50, New York.

This volume was accepted for publication by the British Association

Tables Committee in 1947. In the following year the responsibility which

the British Association had exercised since 1871 through that Committee

was transferred to the Royal Society which set up a Committee of its own

to take over the work [see MTAC, v. 3, p. 333-340]. The publication of
the volume under the Cunningham bequest for the production of new

tables in the theory of numbers is especially appropriate.

The so-called Farey series, F„, of order », is the ascending series of

irreducible fractions between 0 and 1 whose denominators do not exceed w ;

the numbers 0 and 1 are included in the forms 0/1 and 1/1. Thus, Fi is

2iiii?1231432534561
1765473572753745671

The fraction £ is the middle term of every Farey Series ; if two terms are

equidistant from this, their sum is unity ; they have the same denominator

and this denominator is the sum of the two numerators. To emphasize

this property of the series, as well as to economise in presentation, F-i would

be written :
0    11112    12    3    1
1765473572
1654352341

Pages 1-400 of the volume before us are taken up with the presentation of

the 319765 terms of Fvm, written in this form. Except for the last page

there are 400 terms on each page, of 20 lines, each line containing 20 term-

pairs, separated as two groups of 10, and the whole arranged in 8 groups

of 50 term-pairs. The first three and the last three printed term-pairs of

^1026 as given are

0 11 511      512    1
1 1025    1024 and 1023    1025    2
1    1024    1023 512      513    1

It is clear that all terms of an Fm, m < », are contained in the series

of terms of F„.

If ai/bi, a2/b2, a3/b3 are any three consecutive terms of Fn

I. (ai + a3)/(bi + b3) = a2/b2.

II. (ai/bi) - (a2/b2) = l/{bib2) or (a2/b2) - (a3/b3) = l/(b2b3), blt b2, b3
being relatively prime.

III. Any term between a,/bs and at/bt is of the form (pas+ qat)/(pbs+ qbt),

where p and q are integers, and is irreducible if p, q are relatively

prime.



136 RECENT  MATHEMATICAL  TABLES

IV. The total number of terms in Fn is $(«) + 1, where $(«) is the sum

function of Euler's <b(n).

The work under review contains three appendices (which I shall call

A, B, and C).
Appendix A (p. 402-403) gives the Farey series of order 50 with decimal

equivalents to 5D.
Appendix B (p. 404) displays all the terms of FM, in order to give the

reader a general idea of a Farey series which may not be deduced from the

400 pages filled with FW2i.
Appendix C (p. 405) exhibits the "Farey integer-series" of order 100,

that is, the denominators, in order, of all the terms of the series in Fiw

The page has to be read twice (once forward and once backward), in order

to cover all terms.

Let us now pause to consider some historical facts connected with the

series under consideration, insofar as they have bearing on the contents

of the work under review.

a. In Ladies' Diary for 1747, p. 34, Question 281, J. May, Jr., of Am-
sterdam, offered the problem : "It is required to find (by a general theorem)

the number of fractions of different values, each less than unity, so that

the greatest denominator be less than 100." Since reducible fractions are

not excluded the number here would be in excess of the number of terms

in Fw Solutions are presented in Ladies' Diary for 1748, p. 23, and for

1751, p. 30.
ß. In Journal de l'École Polyt., cahier 11, v. 4, 1802, p. 364-368, Citizen

Haros writes on the topic "Tables pour évaluer une fraction ordinaire avec

autant de décimales qu'on voudra; et pour trouver la fraction ordinaire la

plus simple, et qui approche sensiblement d'une fraction décimale."

Haros here proved the general results I and II stated above.

71. In 1816 Henry Goodwyn (1745-1824) printed privately and dis-
tributed some copies of his The First Centenary of a Series of Concise and

Useful Tables of all the complete Decimal Quotients, which can arise from

dividing a unit, or any whole Number less than each Divisor by all Integers

from 1 to 1024. This publication ("specimen" he calls it) contained xiv + 18

pages. Page i is simply the title page quoted above ; p. ii is blank ; on p. Hi

is an introductory statement signed by Goodwyn and dated March 5th,

1816. The 18 pages of tables simply contain 6D equivalents of the various

fractions with denominators successively 1(1)100. From this series of tables

one could get no ready idea of the order of successive terms in a so-called

Farey series.

72. At London in 1818 Goodwyn sent out a publication on the upper

part of the title page of which is the italics title quoted above ; then follows

immediately : To which is now added a Tabular Series of Complete Decimal

Quotients for all the Proper Vulgar Fractions of which when in their lowest

terms, neither the Numerator nor the Denominator is greater than 100: with

the equivalent vulgar fractions prefixed. This is repeated as title page (i) of

the separately paged addition, viii + 32 p. Here we have, p. 1-14, not only

all the terms in the first half of Fm>, and their 10D equivalent values, but

also the means for writing down at once the remaining terms of the series

and their decimal equivalents.
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Hence, this table offers the means for (a) reading off all the results of

Appendix C in the table under review; (b) displaying the Farey series of

order 100 rather than of order 64 in Appendix B ; (c) reading off the Farey

series of order 100 with decimal equivalents rather than the series of order

50 with diminished decimal approximations in Appendix A.

Furthermore, on page v of this 1818 publication of Goodwyn we find

in his survey of the series: "every Fraction in the Series (since they are all

in their lowest terms), is the exponent of the ratio of the sum of the numerators

to the sum of the denominators, of the Fractions occurring next before and

after it." This is just one of the results found by Haros 16 years before.

But in this connection Goodwyn does not mention the name of anyone else.

8. It will presently appear why we must now turn back in our chrono-

logical treatment. In Phil. Mag., v. 47, May 1816, p. 385-386, the geologist
John Farey (1766-1826; see Diet. Nat. Biog.) contributed a letter to the
editor. The title for the heading to this letter is "On a curious property of

vulgar fractions." The letter commences: "On examining lately, some very

curious and elaborate Tables of 'Complete decimal Quotients' calculated

by Henry Goodwyn, Esq. of Blackheath, of which he has printed a copious

specimen, for private circulation among curious and practical calculators,

preparatory to the printing of the whole of those useful tables, if sufficient

encouragement, either public or individual, should appear to warrant such

a step : I was fortunate while so doing, to deduce from them the following

general property; viz.,"—and then follows the Haros-Goodwyn theorem,

with numerical illustrations from F¡ and FM.

What deductions may we now make? Farey was writing about May

1816 and refers to Goodwyn's privately distributed publication of the

previous March, and also, to tables of "Complete Decimal Quotients."

It is obvious that by 1816 Farey must have seen both tables of the 1818

publication of Goodwyn, to each of which the above quoted title applies,

in order to make public his deduction (impossible from the 1816 table alone).

We have noted that Goodwyn formulates this same result.1

Farey's letter was reported in Soc. Philomathique de Paris, Bull. d. Sei.,

1816, p. 112, but Farey's name is not mentioned. This communication

attracted the attention of Cauchy, who gave a proof, and extension, in the

same volume of the Bulletin, p. 133-135. As we have seen these results,

I—II, were already published by Haros 14 years earlier.

The result III was proved by Edward Sang (R. Soc. Edinb., Trans.,

v. 28, 1879, p. 287). The name "Farey Series," which, as we have seen, has

not the slightest justification historically, seems to have been first used by

Sylvester, who also tabulated IV {Phil. Mag., s. 5, v. 15, 1883, p. 251f.).
Well knowing all the facts in question Neville would have served scholarship

better by entitling his book : The Haros Series of Order 1025, or The Goodwyn

Series of Order 1025.
The table in clockmaker Achille Brocot's Calcul des Rouages par Approxi-

mation. Nouvelle Méthode, Paris, 1862, p. 49-89, is a display of Fioo, with
each term approximated to 10D; the first half is identical with Goodwyn's

1818 table. (T2)
In Hütte, Hilfstafeln zur I. Verwandlung von echten Brüchen in Dezimal-

brüche . . . Third newly revised edition, Berlin, 1922, p. 24-61, J. T.
Peters checked and extended "Brocot's" table from 10D to 11D.
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In his Manual of Gear Design, Section One, New York, 1935, p. 148-169,
Earle Buckingham proposed to give a table of Fm to 8D, but there are

numerous omissions and errors; see MTAC, v. 1, 1943, p. 92.

On the other hand, the terms of F120 in R. M. Page, 14000 Gear Ratios,
New York, 1942, are complete and the corresponding 11D values more

reliable. [See MTAC, v. 1, 1943, p. 21-23; 1944, p. 326-329, 430.]
Until the publication of Neville's volume the most extensive Fn to be

published was that for « = 120. The statement by D. H. L. in his Guide
to Tables in the Theory of Numbers, Washington, 1941, p. 8, that Goodwyn

gave F1000 is therefore incorrect; see MTAC, v. 1, p. 372, 1945.
All solutions (x, y) of the equation

(1) bx — ay = c,        (a, b, c, integers, a, b, coprimes)

are given by the formulas

x = ka + Xc,       y = kb + Ye,       k any integer,
if

(2) bX -aY= 1.

Hence, a/b and X/Y are consecutive terms of a Farey series, and solutions

(X, Y) of (2), and hence of (1) are known if the neighbours of a/b in F¡, are

known. Neville's Introduction explains, with numerical illustrations, not

only the processes by which solutions of any equation (1) may be obtained,

however much b exceeds «, but also how to find desired terms in Fio26-

A "Decimal Index" table on p. xxviii-xxix, and the loose card, are useful in

this connection.

Solutions of (1) have important applications in different parts of the

theory of numbers.

The two earlier tables for finding solutions of (2) are by A. L. Crelle

(in his Journal, v. 42, 1851, p. 304-313), and by A. J. Cunningham (in his
Quadratic and Linear Tables, London, 1927, p. 134-157). Crelle gives imme-
diate solutions of (2) for a < b < 120. The results of Cunningham's table,

for b < 100, a < 100, are therefore included in Crelle's. Within its range

the Crelle table would naturally furnish results more readily than Neville's

tables would.
To ensure accuracy in this splendid new volume of the British Mathe-

matical Tables Committee more than 40 people collaborated with Professor

Neville. Hence we must wonder why neither they nor the printer noticed

that on page 399 are ten numbers which should have been in ordinary

rather than in blackface type.

This volume is dedicated "To the memory of Srinivasa Ramanujan,"

Neville's friend, since "to every mathematician of our time Farey's series"

recalls his name.

R. C. Archibald
Brown University

Providence, R. I.

1 Not only the publications of Goodwyn to which we refer, but others, have been dis-
cussed in thorough fashion by J. W. L. Glaisher: (i) Report of the Comm. on Mathematical
Tables, 1873, p. 31-33, 150; (ii) "On circulating decimals with special reference to Henry
Goodwyn's 'Table of circles' and 'Tabular series of decimal quotients' (London 1818-1823),"
Cambridge Phil. Soc, Proc, v. 3, 1878, p. 185-206; (iii) "On a property of vulgar frac-
tions," Phil. Mag., s. 5, v. 7, 1879, p. 321-336. We have already quoted DeMorgan's
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Statement of 1861 [MTAC, v. 2, p. 87] concerning Goodwyn: "His manuscripts, an
enormous mass of similar calculations, came into the possession of Dr. Olinthus Gregory,
and were purchased by the Royal Society at the sale of his [Gregory's] books in 1842."
In the above publications of Glaisher it is stated that no trace of the papers could be found
at the Royal Society. Neville's statement, p. xi, "Goodwyn left a mass of papers, no one
knows what became of them," is therefore slightly misleading.

882[F].—Bengt Persson, "On a Diophantine equation in two unknowns,"

Arkiv Mat., v. 1, 1949, p. 45-57.

The table on p. 57 gives all solutions of the diophantine equation

x2 + x + (p + l)/4 = y3 for all values of the prime p < 100 of the form
4« + 3, except the value p = 3 which is handled separately on p. 45 of

the paper.
Ivan Niven

University of Oregon

Eugene, Oregon

883[F].—B. van der Pol & P. Speziali, "The primes in k(p)," K. Nederl.
Akad. Wetensch., Proc, v. 54 A, 1951, p. 9-15, 1 plate.

The primes of the quadratic field k(e2"13) are presented in graphical

form. Each integer in the field is assigned to the center of a hexagon. The

totality of integers thus fills the plane. Those integers which are primes are

indicated by black hexagons, the non-primes by white hexagons. The plate

inserted between p. 13 and 14 gives a graphical representation of all primes

in the field whose norms are less than 10000. The beautiful symmetrical

diagram contains 7416 black hexagons out of approximately 36276 hexag-

onal cells giving a density of primes of about one out of five.

An enlargement of the central part is given in another figure. The paper

contains a table of solutions (c, ß) of the quadratic partition

p « 6m + 1 = c2 + 3ß2       for       p < 10000.

There are two misprints, communicated by the author :

for       p = 1559       read        1549
for       p = 7459       read       7549

This table was used to construct the diagram. The authors were unaware

that previous tables of this extent exist. Jacobi's table1 for p ^ 12007 is

more than a century old. Other tables by Reuschle2 and Cunningham3

extend to p = 13669 and p = 125683 respectively. [See also UMT 124.]
A comparison of Cunningham's table with the present one reveals no

discrepancy.

A similar diagram for the primes of the field k(i), based on squares, was

published by van der Pol.4
D. H. L.

1 K. G. J. Jacobi, "Über die Kreistheilung und ihre Anwendung auf die Zahlentheorie,"
Jn. reine angew. Math., v. 30, 1846, p. 166-182.

8 K. G. Reuschle, Mathematische Abhandlung, enthaltend: Neue Zahlentheoretische
Tabellen, Stuttgart, 1856.

8A. J. C. Cunningham, Quadratic Partitions. London, 1904; Quadratic and Linear
Tables. London, 1927.

4 B. van der Pol, Verslagen van de Maatschappij Diligentia, The Hague, 1946. A copy
of this diagram woven in red and white squares hangs on the wall of the reviewer's study,
a gift from the author.
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884[H].—W. P. Thijsen, "Over de geïtereerde machtsverheffing," Simon

Stevin, v. 27, p. 177-192, 1950.

The table on p. 185 gives approximate solutions of the equations:

(1) t = x*

(2) t = xx'

for given x. Equation (1) has two solutions :1/ = X, /u;l<X<e<M< °° •

Similarly equation (2) has two solutions: t = <r, r; 0 < a < e_1 < r < 1.

5D values (mostly) are given for X, and4D values for <t,t, all for x = 0(.01).06,

e~e = .06599, .1(.1)1, 1.2, e1,e = 1.447. The values of p corresponding to
x = 1, 1.2, elh are °o, 14.77, e respectively.

On p. 184 there are graphs1 illustrating X, p, a, t as functions of x.

R. C. Archibald
Brown University

Providence, R. I.

1 The curve t = x' has been frequently studied before. For example: (a) J. F. C. Hessel,
"Über das merkwürdige Beispiel einer zum Theil punctirt gebildeten Curve das der Glei-

chung entspricht y = V*." Archiv Math. Phys., v. 14, 1850, p. 169-187; H. Scheffer,
"Über die durch die Gleichung y = %jx dargestellten Curven," Archiv Math. Phys., v. 16,
1851, p. 133-137.

The role which £ = a* plays in Cantor's theory of transfinite numbers will be recalled;
see, for example, G. Cantor, Math. Annalen, v. 49, 1897, p. 242-246 (also the English
translation of P. E. B. Jourdain, Open Court, 1915, p. 195-201).

885[I].—H.  E. Salzer,  "Coefficients for polar complex interpolation,"

Jn. Math. Phys., v. 29, 1950, p. 96-104.

This article is supplementary to two earlier papers,1 both of which are

devoted to the computation of the coefficients of interpolation formulas for

the representation of a function f(z) defined at « successive points zk, where

k ranges from [£» — f J to [J»J, the points being spaced equally along the

arc of a circle about the origin of coordinates.

In the first of these papers the interpolation formula was written in

the form
/(z)~£L*w(P)/(z*),

where the point P was defined to be P = (z — z0)/(zi — z0) = p + iq, and

where P" was represented by pn + iqn- Explicit formulas were given for

the real and imaginary parts of the coefficients LkM, which are functions

not only of pn and qn, but also of 0, since z = peis. The three cases of 3-point,

4-point, and 5-point interpolation were treated.

In the second paper the interpolation formula appeared as follows :

f(z) ~ (E akfk)/zZ a*,
where we write

Ö* =  [(Zfc — Zo)  • • •   (Zfc — 2t_i)(Zjt — Zt+i)  • • •   (zk — Z„_i)(z — Z*)]_1.

If new quantities AkM = (z — zk)ak are introduced, and if z0 = 0, Zi = 1,

z2 = 1 + eie, z3 = 1 + eie + e2ie, z_i = -e-ie - e~2ie, etc., then AkM can

be computed as functions of 0. This article gives the explicit values for

these functions for 3-point to 9-point interpolation inclusive.
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The article under review provides tables of the functions LVn> and AkM,

computed in the first case to 8D and in the second case to 9D, with some

doubt as to the ninth place, over the range 0 = Io, 5°, 10°, 15°, 20°, and 30°.
H. T. Davis

Northwestern Univ.

Evanston, 111.

a H. E. Salzer, "Formulas for direct and inverse interpolation of a complex function
tabulated along equidistant circular arcs," Jn. Math. Physics, v. 24, 1945, p. 141-143,
MTAC, v. 2, p. 73, and "Alternative formulas for direct interpolation of a complex function
tabulated along equidistant circular arcs," Jn. Math. Physics, v. 26, 1947, p. 56-61.

886[K].—R. L. Anderson & T. W. Anderson, "Distribution of the circular

serial correlation coefficient for residuals from a fitted Fourier series,"

Annals Math. Stat., v. 21, 1950, p. 59-81.

The model for observations x{, i = 1,2, • • •, N, here used is

Xi  —   Pi  =   PO*,'-!   —  Pi-l)   —   Ui,

with Xo = xn and p0 = pn, in which the {m,} are random disturbances each

independently and normally distributed with zero mean and variance a2,

and pi is a linear form in Fourier terms. The coefficients of the Fourier

terms are the usual regressions of the x, on these terms. The fitted values

of the pi are denoted by w, and the serial correlation coefficient

N I    .V

R = L (*< — mi)(xi-i — mi-i) / Y, (xi - m{)2
i=-l /       i-1

(with lag 1), where mo = mn, is used to test hypotheses concerning p.

Under the null hypothesis of zero serial correlation (p = 0), Table I, p. 65,

gives to 3D the exact 5% and 1 % points for R for P periods used in the fitted

series for the following cases: P = 2, N = 6(2)60; P = 2, 4, N = 8(4)100;

P = 2, 3, 6, N = 12(6)150; P = 2, 12/5, 3, 4, 6, 12, AT = 24(12)300.
Table II, p. 66-67, gives exact 5% and 1% significance points for R (the

distribution of R is asymmetric in these cases) for single periods for P = 3,

N = 6(6)150; P = 6, N = 12(6)150; P = 4, N = 8(4)100, 108(12)144;
P = 12, N = 12(12)300.

c. c. c.

887[K].—D. G. Chapman, "Some two sample tests," Annals Math. Stat.,

v. 21, 1950, p. 601-606.

Let s represent the difference of two independent variables, each of

which has a /-distribution with « — 1 degrees of freedom. Table I contains

values of P(0 = s = s0) ; the values of « and s0 considered are : « = 2(2)12, » ;

So = .5(.5)8(2)12, 21, 30, 50, 100. Table II contains values of s0 such that
P(\s\ S so) = -01, .05 for« = 2(2)12, ».

Another place where 1 percent and 5 percent points for the absolute

difference of two independent ¿-statistics can be obtained is in the 1948

edition of Fisher & Yates' tables.1 Let tL have a /-distribution with «x

degrees of freedom while t2 is independent of ¿i and has a ¿-distribution

with «2 degrees of freedom. Let d = (h — t2) cos 0. Table Vi (by P. V.
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Sukhatme)  contains values of d0 such that P(\d\ > d0) = .01,  .05  for
«i, «2 = 6, 8, 12, 24, and 0 = 0°(15°)90°.

J. E. Walsh
U. S. Bureau of the Census

Washington, D. C.

1 R. A. Fisher & F. Yates, Statistical Tables for Biological, Agricultural, and Medical
Research. London, 1948.

888[K].—Jerome Cornfield & Nathan Mantel, "Some new aspects of

the application of maximum likelihood to the calculation of the dosage

response curve," Amer. Stat. Assn., Jn., v. 45, 1950, p. 181-210.

Table 1 (p. 185-188)givesZ/P, -Z/Q,Z2/Q2-ZY/Q,andZY/P+Z2/P2,
all to 5D, for X = 5(.01)10, and for X = 0(.01)5 by symmetry. X - 5 = Y
is a normal deviate, Z being the corresponding ordinate; P is the proba-

bility of a deviate less than Y, and Q that of a larger deviate. The purpose

of the table is to minimize the arithmetic of the maximum likelihood esti-

mate of the probit regression. There are detailed instructions for calculation.

H. W. Norton
University of Illinois

Urbana, Illinois

889[I, K].—D. B. DeLury, Values and Integrals of the Orthogonal Poly-
nomials up to » = 26. Toronto, Published for Ontario Research Founda-

tion by University of Toronto Press. 1950, v + 33 p. 17.5 X 25.2 cm.

$1.25.

The polynomials tabulated are those of Chebyshev1 and Gram and

are the Fisher & Yates2 polynomials denoted by &•'(*) = £/(*, «).
The values of £/(*, ») are tabulated for r = 0(l)»— 1 and for

» = 3(1)26.
The sums of squares of the £'s are given at the foot of each column.

For r < 14 and » < 26 values of

/r-   f" X €,'(*, n)d*
Jo

and Xn-J
{/(*,») dx

are tabulated.
The tables presented in the book were prepared for the purpose of

furnishing an arithmetical basis for a numerical integration procedure

appropriate to situations in which the observed or measured ordinates are

subject to a random error.

Of considerable interest is the discussion concerning the fitting of a

function in two variables by means of orthogonal polynomials.

Two examples of the use of the tables are given. The first deals with

evaluating an integral over a range of equally spaced data. The second

example shows how the total number of trees on a given area can be esti-

mated from counts on square plots situated centrally on square blocks

within the area. The orthogonal polynomials are used to determine the
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equation of the surface. The equation is then integrated to yield the desired

estimate.

It is of interest to point out that a table of orthogonal polynomials

and their derivatives has been prepared by W. F. Brown, Jr. & C. W.

Dempsey {MTAC, v. 4, p. 224-5].
A comparison between the values of the polynomials tabulated by

DeLury and by Brown & Dempsey show no discrepancies. It is to be

regretted that the values of the ratio of £' to £ are not given in the book.

The book is clearly printed. It should be a welcome addition to the

library of statisticians and mathematicians.

Jack Sherman
Beacon Laboratories

Beacon, N. Y.

Further values of these orthogonal polynomials have been given by

Anderson & Houseman3 for n = 3(1)104, r = l(l)min(5, «) and by van
der Reyden4 for « = 5(1)13, r = 1(1) various values less than 9 and for

« = 14(1)52, r = 1(1)9.
The introduction describes the uses of the table in fitting polynomials

by least squares, in finding integrals of the resulting polynomials, in carrying

out the associated analyses of variances and in determining confidence

intervals in one and in two independent variables.

Values of £/ for r < 5 are said to be reprinted from Fisher & Yates.2

The author states that "The director of the Onderstepoort Veterinary

Research Institute and Dr. D. van der Reyden4 also have kindly granted

permission to reproduce portions of the tables which appeared in the

Onderstepoort Journal." The present tables are, however, correct in two

places where minus signs are missing from van der Reyden's table (for

w = 17, r = 5, |i' = -3 and « = 18, r = 5, &' = -1. Van der Reyden
gives values of the polynomials for x < x). And a common factor in the

values for « = 25, r = 8 in van der Reyden's table has been removed.

For more complete discussions of these orthogonal polynomials see the

review by Eisenhart £MTAC, v. 1, p. 148-150] and papers by Birge,6
Weinberg6 and van der Reyden4 and the references given in these places.

For punched card procedures using such tables as the one under review

see a paper by Lila Knudsen. 7
K. J. Arnold

University of Wisconsin

Madison, Wisconsin

1 P. L. Chebyshev, "Sur l'interpolation par la méthode des moindres carrés," Akad.
Nauk, Leningrad, Mémoires, s. 7, v. 1, no. 15, 1859, p. 1-24. Oeuvres, v. 1, p. 471-498.

2 R. A. Fisher & F. Yates, Statistical Tables for Biological, Agricultural and Medical
Research. Third ed., London, 1948. (First ed., 1938.)

8 R. L. Anderson & E. E. Houseman, Tables of Orthogonal Polynomial Values Extended
to N = 104. Ames, Iowa, Iowa State College of Agriculture and Mechanic Arts, 1942.
(Research Bulletin 297, p. 593-672, Agricultural Experiment Station, Statistical Sections.)
[MTAC, v. 1, p. 148-150, v. 5, p. 81.]

4 D. van der Reyden, "Curve fitting by the orthogonal polynomials of least squares,"
Onderstepoort Journal of Veterinary Science and Animal Industry, v. 28, 1943, p. 355-404.

6 Raymond T. Birge, "Least-squares' fitting of data by means of polynomials," Review
of Modern Physics, v. 19, 1947, p. 298-347.

6 J. W. Weinberg, "Mathematical appendix," ibid., p. 348-360.
7 Lila F. Knudsen, "A punched card technique to obtain coefficients of orthogonal

polynomials," Am. Stat. Assn., Jn., v. 37, 1942, p. 496-506.
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890[K].—A. K. Gayen, "The distribution of the variance ratio in random

samples of any size drawn from non-normal universes," Biometrika,

v. 37, 1950, p. 236-255.

The author is interested in the non-normal sampling distribution of the

two statistics : w = the ratio of two estimates of the variance obtained in a

one-way classification for the analysis of variance (homogeneity), v = the

variance ratio of two independent samples (compatibility). To introduce

non-normal populations the Edgeworth series,

/(*) = v(x) - ~ ?«>(*) + ^ <Pw(x) + y2 <P^(x),

is used. With an Edgeworth series population the author evolves the

frequency densities of the two statistics. These distributions are then

related to their corresponding "normal" sampling distributions and correc-

tion terms for the skewness and excess are determined. The coefficients of

X3 ( = Vft) and X4 ( = ß2 - 3) are tabulated in Table 4 (p. 252-255) to 4D
for the 5 percent points of Fisher's Z for the degrees of freedom vi = 1(1)6,

8,12,24, °o;x2= 1(1)6,8,12,20,24,30,40,60,120, °o. These tables enable
one to compute the error one would make in using the ordinary tables

associated with the normal population distribution of Z for the 5 percent

level if he were aware of the X3 and X4 of his population and was willing to

assume an Edgeworth type distribution. In this connection the author

notes that the Edgeworth restriction would not be serious if the size of

sample was sufficient to enable one to neglect terms of order A7-3. If X3 and

X4 are unknown one might use their sample estimate in the formulas to get

an indication of the size of error involved.

C. F. Kossack
Purdue University

Lafayette, Ind.

891 [K].—N. F. Gjeddebaek, "Contribution to the study of grouped obser-

vations. Application of the method of maximum likelihood in case of

normally distributed observations," Skandinavisk Aktuarietidskrift, v. 32,

1949, p. 135-159.

Let
dip(x)

<p(x) = (2x)-iexp (- x2/2),       $(*) =   P <p(y)dy,       <p'(x) =
*/—00

<p(x + y) - <p(x) _ <p'(x + y) - <p'(x)

Zl{x'y) $(x + y) - Hx) '      22 " Hx + y) - *(*)

dx

Table 1, p. 151-154, contains 4D values of Zi(x, y) for y = 0(.1)4 and
x = — .1Ä(.1)4, where h is the largest integer < 5y + 1. Table 2, p. 155-
158, contains 4D values of z2(x, y) for the same values of y and x in Table 1.

Given y, both zt and z2 are symmetrical about the value x = —y/2. Table 3,

p. 159, contains 4D values of Zi and z2 for y —>«> and x = —4.5(.1)0. The

functions Zi and z2 are used in an iterative procedure for determining the

maximum likelihood estimates of the mean and standard deviation of a
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normal population when the observations from this population have been

grouped.
J. E. Walsh

Bureau of the Census

Washington, D. C.

892 [K].—A. Hald, The Decomposition of a Series of Observations Com-

posed of a Trend, a Periodic Movement and a Stochastic Variable.

Copenhagen, G. E. C. Gads, 1948, 134 p., 17.2 X 25.1 cm. 8 kr.

The author defines polynomials £r(x„j), of degree r=l, • • • ,l(v=l, • • •, » ;

i = 1, • • •, k), by means of the relations £M.. = 0 (a dot in a subscript indi-

cates a mean with respect to the corresponding variable), p = 1, • • ■, I, and

71 ft

£  Z (fm - &-f)(£»i - &.•<) = 0 for p <r,r = 2, •■-, I; p = 1, ••-, I - 1.
»—1   i=l

Here £,-,,• is used to denote %r(xri).

The leading coefficients are assigned the value unity and then the remaining

coefficients are determined by the defining equations. For k — 1 these

become the ordinary Chebyshev polynomials over equally spaced abscissas.

The tables give values generally to 6S, of these polynomials of degrees

1 to 5 for the combinations k = 3, « = 5, 7 ; k = 5, « = 5, 7, 8, 9, 10, 11.
For k = 4, n = 25 the degrees run from 1 to 4 and for k = 12, « = 10,
the degrees run from 1 to 6. In addition explicit formulas for the poly-

nomials tabulated are given (the author was unable to derive the general

explicit formula) and the values, again generally to 6S, of the elements of

the three matrices ||£r-i||, ||5r(1||, ||5'r(1||, for the polynomials tabulated in which

n       ft

àrfi   ==   2-1    2—i  \Krvi Çr.i)(çiit>i Çii-i) » Wr/i   =   *J,  T   y^  p),
v—1   i=l

and

n        ft

^ 7>   =   2w    Zw ÇrviÇfivi.
v-l   i-l

c. c. c.

893 [K].—H. O. Hartley, "The maximum F-ratio as a short-cut test for

heterogeneity of variance," Biometrika, v. 37, 1950, p. 308-312.

The ratio of the largest to the smallest in a set of k variance estimates

is proposed as a short-cut test in place of Bartlett's test,1

M = N log, {A-1 £ vtst2} -Er, loge st2
i t

where the estimate s¡2 is based on vt degrees of freedom and N = ¿Z, vt-
t

Since logeS2 is approximately normal with variance 2/(v — 1),

iVax(a) = exp {wk(a)<2/(v - 1)1

gives approximately the 100a% point of the ratio when the k estimates

are based on the same number, v, of d.f. and where Wk(a) is the corre-
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sponding point of the distribution of the range in samples from normal

(Pearson & Hartley2). Tables 1 and 2 give comparisons of the approxi-

mate and exact 5% points of Fmzx to 3S for k = 2 and v = 2(1)10, 12, 15, 20,
and for v = 2 and k = 2(1)12, respectively. The two sets of exact results

were used to obtain second approximations by the adjustment, Fma^(a)

(second approx.) = Fm&li(a) (first approx.) (1 + qyqk), with q, and qk fitted

to the exact values. The second approximations, with exact values in the

first row and the first column, are given in Table 3, which shows upper

5% points of F™* to 3S in a set of k mean squares all based on v d.f. for

k = 2(1)12 and v = 2(1)10,12, 15, 20, 30, 60, ».
Leo Katz

Michigan State College

East Lansing, Mich.

1 M. S. Bartlett, "Properties of sufficiency and statistical tests," R. Soc. London,
Proc, v. 160A, 1937, p. 268-282.

2 E. S. Pearson & H. O. Hartley, "The probability integral of the range in samples
of n observations from a normal population," Biometrika, v. 32, 1942, p. 301-310.

894 [K].—H. O. Hartley & E. S. Pearson, "Tables of the x2-integral and
of the cumulative Poisson distribution," Biometrika, v. 37, 1950, p.

313-325.

Let P(x2, v) = 2-*»{r(|!0}-1 i " e-^x^-'dx.

The authors have tabulated (p. 318-325) P(x2, ») to 5 places of decimals
for v = 1(1)20(2)70 degrees of freedom and x2 = 0(.001).01(.01).1(.1)2(.2)-
10(.5)20(1)40(2) 134. At the same time the table provides the values of the

c-l

cumulative Poisson distribution since P(x2, v) = ¿Z, e~mm{/i ! with m = x2/2,

c = v/2. Hence for m ^ 15 the complete Poisson distribution is provided

and for m > 15, only the truncated Poisson sum up to c = 35 (v = 70).

Methods of interpolation in the table are thoroughly discussed. The authors

point out that Pearson's table of the incomplete T-function1 and Molina's

table of the Poisson exponential limit2 are more extensive, the former for

X2 and the latter for the Poisson distribution. But Pearson's table involves

a troublesome transformation and Molina's tables do not give P(x2, v) for

odd values of v. In addition it may be noted that Salvosa's table of the

Type III function, both areas, ordinates and the first six derivatives3 may

be used to evaluate P(x2, v) by setting t in Salvosa's table = (x2 — v)(2v)i,

and a32 = 8/v. A comparison by the reviewer with the tables of P(x2, v)

given in the Elements of Statistics by Davis & Nelson4 for small values

of x2 in a few instances revealed no divergencies, but for v = 2, x2 = 5

Davis and Nelson give .08208 49986, while the present table gives .08209.
The same phenomenon was noted for v = 9, x2 — 3.0. No doubt the table

will be found useful in statistical investigations.

L. A. Aroian
Hughes Aircraft Company

Culver City, Calif.

1 Karl Pearson, Tables of the Incomplete T-Function. London, 1922.
' E. C. Molina, Poisson's Exponential Binomial Limit. New York, 1945.
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3 L. R. Salvosa, "Tables of Pearson's type III function," Annals Math. Stat., v. 1,
1930, p. 191-198. Appendix, p. 1-187.

4 H. T. Davis & W. F. C. Nelson, Elements of Statistics with Applications to Economic
Data. Bloomington, Ind., 1935.

895[K].—J. M. Howell, "Errata to 'Control chart for largest and smallest

values,' " Annals Math. Stat., v. 21, 1950, p. 615-616.

In the paper cited in the title {MTAC, v. 4, p. 207-208] the author
notes that numerical errors exist in Table I (as was pointed out by MTA C's

reviewer). Using values appearing in a paper by Godwin,1 Howell now

gives a corrected version of Table I to 4D.

C. C. C.

1 H. J. Godwin, "Some low moments of order statistics," Annals Math. Stat., v. 20,
1949, p. 279-285. [See MTAC, v. 4, p. 20.]

896[K].—R. F. Link, "The sampling distribution of the ratio of two ranges

from independent samples," Annals Math. Stat., v. 21, 1950, p. 112-116.

Consideration is given to a sample of « ordered observations drawn from

a population with variance a2. Let w = (xn — Xi)/<r. Then for two samples

of sizes «i and n2 drawn from populations of the same variance, the ratio

Wi/w2 becomes the ratio of the two ranges. Table II gives values of R for

all combinations of «i and n2 = 10 and for a = .005, .01, .025, .05, and .10,
such that

Pr (w-Jw2 < R) = a

where the samples are drawn from populations with the same variance.

These values may be used for testing the hypothesis that two independent

samples were drawn from normal populations with the same variance. This

test is therefore comparable to the F test.

T. E. Bickerstaff
University of Mississippi

University, Miss.

897[K].—E. Lord, "Power of the modified /-test («-test) based on range,"

Biometrika, v. 37, 1950, p. 64-77.

For a sample of « independent observations from a normal population

with unknown standard deviation, a, the «-test is the ratio of the normal

deviate to an independent range estimate of the standard error. The power

of a two-tailed test, ß(p), against an alternative p = £/o-, is the sum of the

two power components, ß'(p) = Pr {lower tail¡p{ and ß"(p) = Pr {upper

tail|p). The standardized error of Neyman & Tokarska1 is pa such that

1 — ß(pa) — a for any significance level a. Six tables are given to compare

the standardized errors of the u-test and the ¿-test for a = .05 and a = .01.

Table I, p. 67, shows to 5D the power components ß'(p) for p = 1(1)10

and ß"(p) for p = 1(1)3 and v = 1(1)20, » of the /-test, where v is the
number of degrees of freedom for estimating variance. Table II, p. 68,

gives the standardized errors for the /-test, p.os to 3D and p.oi to 2D for

v = 1(1)20,30,60,120, ».
Table III, p. 70, gives the power components for the «-test to 5D for

« = 2(1)20, »; ß'(p) for p - 1(1)10 and ß"(p) for p = 1(1)3. Table IV,
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p. 71, shows the standardized errors for the «-test, p.os to 3D and p.oi to 2D

for« = 2(1)20, ».
In Table V, p. 72, there are given values of p.o6 to 2D for the «-test

based on the average range in m samples of « independent observations

each, for » = 2(1)20 and m = 1(1)10(5)20, 30, 60, 120. From Table V, it
appears that the optimum grouping of N ( = mn) observations is one such

that 6 Si » Si 10 in general.

Table VI, p. 76, gives the ratio of the standardized errors at 5% and 1%

levels of the w-test to the /-test for 3D for w = 2(1)20, <». The ratio is

Si 1.024 for the 5% level and Sil.045+ for the 1% level.

Leo Katz
Michigan State College

East Lansing, Mich.

1 J. Neyman & B. Tokarska, "Errors of the second kind in testing 'Student's' hy-
pothesis," Am. Stat. Assn. Jn., v. 31, 1936, p. 318-326.

898[K].—P. B. Patnaik, "The use of mean range as an estimator of vari-

ance in statistical tests," Biometrika, v. 37, 1950, p. 78-87.

Let Xi, x2, • • •, xn be a random sample of « observations, arranged in

ascending order of magnitude, drawn from a normal population with mean p

and variance cr2. Define the range by wn = xn — xu and if there are m such

independent samples with w observations each, the mean range by tDm,„.

Further d„ is defined by E(wn) = <sdn. The author approximates the dis-

tribution of wm,n by means of the first two moments of wm,n and the x2

distribution with v degrees of freedom and scale factor c. In Table 1, needed

for the distribution of wm,n, are given the values of dn for « = 3(1)10 to

4D, v (the degrees of freedom which are not integers) to 3D, c, the scale

factor to 4D, for m = 1(1)5, and » = 3(1)10. Table 2 gives the compari-
sons of the exact and approximate percentage points of u = dnx/wm,„ for

» = 5, 8, 10, m = 1, 3, 5, 10, a = .1, .05, .02, .01, where x is distributed
normally with mean zero, and variance cr2 and a denotes the percentage

points. The exact results are from Lord's computations,1 while the approxi-

mate results are based on the author's approximation to the u distribution.

Table 3 compares the exact power function of u with the author's approxi-

mate Student's non-central /, for p/o- = 1, 2, 3, p ¿¿ 0, » = 5, 10, m = 3, 5

for a one-tailed region, a = .05, to 3D. For the symmetrical or double-

tailed test, comparisons of the power are made form = 1,» = 10; m = 2,

« = 10; m = 4, « = 5; m = 5, w = 3, and m = 2, « = 5 usually to 3D.
The results are particularly useful in quality control and wherever it is

desirable to reduce computation time by use of the mean range in place of

the sample standard deviation as an estimator of the population standard

deviation.

L. A. Aroian
Hughes Aircraft Company

Culver City, Calif.

1 E. Lord, "The use of range in place of standard deviation in the /-test," Biometrika,
v. 34, 1947, p. 41-67; "Power of the modified /-test (a-test) based on the range," Biometrika,
v. 37, 1950, p. 64-77. [RMT 897]
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899[K].—L. W. Pollak, assisted by U. N. Egan, All Term Guide for
Harmonie Analysis and Synthesis Using 3 to 24; 26, 28, 30, 34, 36, 42,
44, 46, 52, 60, 68, 76, 84 and 92 Equidistant Values. (Department of
Industry and Commerce, Meteorological Service, Geophysical Publica-

tions, v. 2.) Dublin, Stationery Office, 1949, xx, 185 p. 24.5 X 30.2 cm.
£2s2.

The purpose of the present work is to facilitate the work of fitting the

Fourier series

y = po + pi cos x + p2 cos 2x -jr • • • + 5i sin x + q2 sin 2x +

to a set of « equidistant values, where « is any one of the numbers given

above in the title.

The tables are supplementary to those published by the author in 1947

and described in MTAC, v. 2, p. 306. The tables of the "Schedule," which
comprises most of the work (185 p.), give the values to 5D of the functions

2irkm .    2irkm
cos-,        sin-,

« «

where n is any one of the numbers given above in the title, m < w, and

k < \n.
In a typical entry « is printed in large blackface type, let us say n = 20,

and for this number there are then 10 tables corresponding to k = 1 to

10 = \n. The value of k is printed in smaller blackface type at the top of

each table. Two arguments are given, one for m, denoted by i by the author,

which ranges over the positive integers, and the other for i' = km — sn,

where s is chosen so that km — sn is positive and less than w.

Two other entries are included, which refer to tables in the author's

Rechentafeln zur harmonischen Analyse, Leipzig, 1926, by means of which

the multiplication of the harmonic terms is facilitated. The choice of « given

above was guided by the choice of values found in the Rechentafeln.

The present work is a valuable addition to other similar tables which

have been computed and which are listed in MTAC, v. 1, p. 193.

H. T. Davis
Northwestern Univ.

Evanston, III.

900[K].—E. M. Schrock, Quality Control and Statistical Methods. New
York, Reinhold Publishing Corporation, 1950. xi + 213 p., 17.1 X 24.1
cm. $5.00.

Tables 9.7a, p. 69-71, and 9.7b, p. 73-122, of this book were prepared
with the apparent purpose of routinizing the construction of control charts

for industrial applications covering most situations which are likely to be

encountered in practice, in so far as problems dealing with the per cent

defective are concerned.

Table 9.7a labeled, "Table of Width of 3-Sigma Band in Per Cent,"
gives the amounts to be added to and subtracted from the average per cent

defective or process level, p, in order to obtain 3-sigma upper and lower

control limits for sample per cent defectives. Thus Table 9.7a gives values

of 3[p(l - p)/A]* to 4D, where N is the sample size, for N = 10(10)100-
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(100)4000(200)5000(500)10000, and p = .001, .0025, .005, .01, .015, .02(.01)-
.1(.02).2(.05).5. For non-tabulated p's and N's, the author states, "although

the relationships are curvilinear, straight line interpolation between rows

and columns may be used for all practical purposes."

Table 9.7b, Section One, gives 3-sigma upper and lower control limits

for the number of defectives to the nearest integer and for the per cent

defective to 2D and also gives the expected number of defectives for ranges

of p and N as above. Grant1 gives a comparable table of upper and lower

control limits alone. Section II of this table is a rearrangement of the same

information for numbers of defectives, giving separately for each N = 100-

(100)4000(200)5000(500)10000, the values for the same p's as above up to
.35. Thus Section One of Table 9.7b with different sample sizes on each

page is convenient for testing control with respect to an established or

standard process level of per cent defectives, whereas Section II of Table

9.7b "is extended for use in situations where several different quality char-

acteristics, each with a different quality level, will be checked on samples

of the same size."

Tables 9.7a and 9.7b occupy some 54 pages of the book and because of

the wide ranges of sample sizes and values of per cent defective should be

of considerable value as a ready reference to the quality control engineer

for industrial problems involving per cent defective. Figures 9.7a and 9.7b

are included in the book for obtaining limits for sample sizes other than

those given in Tables 9.7a and 9.7b or for values of per cent defective larger

than 35%. These figures can also be used for 3-sigma confidence intervals

for the per cent defective of the lot or material samples. Examples are given

for the use of Tables 9.7a, 9.7b and Figures 9.7a, 9.7b.

F. E. Grubbs
Ballistic Research Laboratories

Aberdeen Proving Ground, Md.

1 E. L. Grant, Statistical Quality Control. New York, 1946.

901 [K].—C. A. Williams, Jr., "On the choice of the number and width

of classes for the chi-square test of goodness of fit," Am. Stat. Assn.

Jn., v. 45, 1950, p. 77-86.

This paper contains a presentation and discussion, intended mainly for

the non-mathematical user of tests of goodness of fit, of results of a paper

by Mann and Wald1 which make it possible to optimize, in a certain sense,

the number of classes and the choice of class-boundaries for the chi-square

test. Tables are given showing, for the 1% and the 5% significance level

and the sample sizes A^ = 200(50)1000(100)1500, 2000, the optimum num-
ber k of classes, as well as some information related to the power of the test.

The author suggests that the tabulated values of k may be halved with

little loss of power.

Z. W. Birnbaum
University of Washington

Seattle, Wash.

1 H. B. Mann & A. Wald, "On the choice of the number of class intervals in the appli-
cation of the chi-square test," Annals Math. Stat., v. 13, 1942, p. 306-317.
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902[L].—AkademhÂ Nauk, SSSR. Matematicheskiï Institut im. V. A.
Steklova, Institut Mekhaniki, Tablitsy znacheniï Funktsiï Besselià ot

mnimogo Argumenta. Edited by I. M. Vinogradov & N. G. Chetaev,

Moscow, Leningrad, 1950, xii, 404 p. 39 roubles.

Here we have finally the work which was started in 1930 and ready for

publication in 1941 {MTAC, v. 3, p. 66 and v. 5, p. 112], after collaboration
of various individuals and academies, as set forth in the preface. The world

war delayed publication, but after further revision by the present editors,

an edition of 2,500 copies was finally printed last year.

After the introductory matter there are two sections (p. 1-201, 203-403)

each containing four tables. These tables are of (1) I0(x) to 8D; (2) Ii(x) to

9D; (3) 2w~1K0(x) and (4) 2t~1Ki(x) to 8S or 8-12D; (5) I,(x) and (6) /_,(*)
to 8S; (7) Ko(x) and (8) Ki(x) to 8S or 8-12D; all for x = 0(.001)10, A.

The only publications referred to in the literature list are: Watson,

A Treatise on the Theory of Bessel Functions, 2nd ed., 1944 and the Russian

translation of 1949. Gray-Mathews-MacRobert, A Treatise on Bessel

Functions. The date given is 1931, but presumably 1936 was intended.

A Guide to Tables of Bessel Functions as in MTAC, v. 1, no. 7, 1944. FMR,
Index, 1946. And finally there is a reference to tables of Io(x) and L(x) in

BAAS, Report, 1893 and 1896, but these tables are attributed to Aldis,
and not to the real author A. Lodge; these 9D tables were for x = 0(.001)-

5.1, A. This mention of the name Aldis, where there was no reason for it,

and general considerations, suggest very definitely that other unmentioned

important tables were well known to the compilers and computers. Never-

theless, it is undoubtedly true that most of the values given in the volume

before us are new.

Let us recall just what was available before, apart from the tables of

Lodge. In R. Soc. London, Proc, v. 64, 1899, p. 218-223, Aldis gave tables
of I0(x), h(x), for x = [.1(.1)6; 21D], [6(1)11; 18D]. BAASMTC, Math.
Tables, v. 6, 1937, contained tables of I„(x), Ii(x), for x = [0(.001)4; 8D],
[4(.001)5;7D], 82 and oí K0(x), Ki(x), (or x = [0(.01)2; 8D], [2(.01)4; 9D],
[4(.01)5; 10D], 52. In the case of I<¡, 7i it was found that the Lodge tables
were not dependable in final digits, and hence the calculations were derived

by subtabulation in the 21D values of Aldis. In NBSMTP, Table of the
Bessel Functions Ja(z) and Ji(z) for Complex Arguments, 1943, second edition

1947, there are tables of h(x), h(x), for x = [0(.01)10; 10D]. These tables
occur again in NBSCL, Table of the Bessel Functions Y0(z) and Yi(z) for

Complex Arguments, New York, 1950, published almost simultaneously with

the volume under review. In this volume for x = [0(.01)10; 10D] are also

tables of (3) and (4) 2%-xK0(x), 2ir~1Ki(x). The only previous tables of
I±i(x) are those of A. N. Dinnik, 1915 {MTAC, v. 1, p. 287], Ih(x), for
x = [0(.1)15;4-6S]; I-\(x), for x = [0(.1)7; 5-6S]. But Dinnik's other
tables have been found notoriously unreliable {MTAC, v. 2, p. 379].

Finally there is NBSAMS 1, Tables of the Bessel Functions, Y0(x), Yi(x),
Ko(x), Ki(x), 1948 {MTAC, v. 3, p. 187-188], K0(x) and Kt(x) for x = [0-

(.0001).033(.001)1;7S], A2.
From these statements the exact relation of the Russian volume to what

had appeared before (which excludes NBSCL, 1950) is clear. The only
exact duplication is in I0(x), Ii(x), for x = 0(.001)4 in the BAASMTC
volume, and in the Lodge h(x) table.



152 RECENT  MATHEMATICAL  TABLES

Thus, if the tables in this new volume are found to be accurate,1 a

notable addition has been made to the large amount of tabular material

dealing with Bessel functions.

Note added in proof: A friend (who desires that his name be withheld)

has drawn my attention to ten additional errata, each of 3 to 10000 units,

in final decimal places:

Function x for read

h(x) 1.009 175 075
2.46 8582 7582

h(x) 4.06 6 3
4.67 6 3
4.87 4 1
4.88 5 2
5.07 3 0
5.08 6 3

h(x) 6.79 9981 1981
9.73 46664 56664

Because of these, and many other less serious errors already observed these

Russian tables of the Academy of Science must be characterized as decidedly

unreliable.
R. C. Archibald

Brown University

Providence, R. I.

1 On spot-checking the 9D table of Ii(x) in the work under review with the 10D table
of NBSMTP, 1943, one difference of 4 units in the end-figure was found at x = .5, and
49 differences of one or two units in end-figures were found for the following values of x:
.03, .05, .07, .09, .7, .75, .8, 1.02, 1.03, 1.11, 1.15, 1.16, 1.17, 1.18, 1.25, 1.3, 1.35, 1.36,
1.37, 1.39, 1.5, 1.55, 1.57, 1.59, 1.7, 1.85, 1.87, 1.94, 1.97, 1.98, 2.67, 2.68, 2.69, 2.7, 2.85,
3.03, 3.4, 3.95, 4.35, 4.55, 4.65, 4.71, 4.72, 4.76, 4.77, 4.79, 4.85, 5.05.

At every one of these 50 places, except for x = .5 (because of the very weakly printed
left part of Lodge's ending 4, it was copied in the Russian table as a 1), the values of the
Russian table were identical with the values of the Lodge (1893) 9D table of I¡(x). Hence,
it seems evident that the Lodge table was copied completely without any checking what-
ever. Since the British Committee has told us that the 9D tables of h(x) and h(x) "were
subject to errors of two or three units in the last decimal, so that rounding off would not
yield 8-figure values of the standard of accuracy set for the Committee's tables," we can
assert that the Russian tables are probably incorrect at each of the places indicated above.
Furthermore, spot-checking the 8D table of h(x), differences were found at x = .07, 3.3,
4.4, where there was evident rounding off of Lodge values. Since correct 8 D values are given
in the BAASMTC tables it is definitely suggested that the Russians also copied their table
of Io(x), up to x = 5.1, rounded off from Lodge, and that they did not have the Ia(x) table
in BAASMTC. Since the Lodge table of Ii(x) abridged to interval .01 was reprinted in
Gray & Mathews, 1895, 1922, 1936, all the probable errors noted above are also to be
found in G. & M. and G. M. & Mac R.

In a brief spot checking beyond x = 5.1 up to x = 7, unit differences in end figures
were found at x = 5.3, 5.45, 5.57, 6.15, 6.35, 6.45, 6.75.

903[L].—P. A. Carrus & C. G Treuenfels, "Tables of roots of incom-

plete integrals of associated Legendre functions of fractional orders,"

Jn. Math. Phys., v. 29, 1951, p. 292-299.

Poicos 0) is the associated Legendre function of order one and fractional

index p. Tabulated are the zeros of

d
PMx(cos 0) = 0,        j- P,l(cos 0) = 0

treated as a function of the index.
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Table I gives the first 50 values of p for 0 = 90°(5°)175°, while Table II
gives the first 50 values of v for 0 = 90°(5°)130°. The £-th root is denoted
by pic, vk. In both tables entries are mostly to 5S. Values were derived from

power series, for the smaller roots, and from asymptotic expansions due to

Pal1 for the larger roots. Convergence difficulties prevented extension of

Table II beyond 130°.
No indication as to accuracy of the tables is given, though it is stated that

interpolation of the roots 0-wise is practicable with five point Lagrangean

interpolation. The reviewer has spot checked the tables by differencing and

in a number of cases found that third differences are not smooth, indicating

that some errors are present. For example, in Table I, entry for k = 1,

0 = 130° is undoubtedly in error. The entry 1.3001 should probably read
1.2975. In Table II, there is a typographical error for the entry k = 49,
6 = 90°: for 88.000 read 98.000. In Table II, for k large, third differences
are not smooth. The reviewer has not differenced all the entries. In absence

of error, interpolation with four point interpolation should be sufficient to

insure full accuracy of Tables I and II.

In Tables III and IV, values of the integral fx°0{Pnl(x)]2dx are pre-

sented. Here x = cos 0, n stands for p or v, and tabulations are given for

each value of the index found in Tables I and II. However, in Table III,

0 = 90°(5°)145°, in Table IV, 0 = 90°(5°)130°. Entries are to 4S and 5S.
Finally, Table V gives values of fo1{Pn(x)}2dx to 5D for » = 0(0.05)1.0
together with second differences.

All tables are new, though Pal1 had previously determined some p and v

values of the functions considered for various orders and values of 0 in the

first quadrant.

Yudell L. Luke
Midwest Research Institute

Kansas City, Missouri

1 B. Pal, "On the numerical calculation of the roots of the equations iVG*) = 0 and

■j- Pnm(n) = 0 regarded as equations in n," Calcutta Math. Soc., Bull., v. 9, 1918, p. 85-95

and v. 10, 1919, p. 187-194.

904[L].—A. H. Carter & O. A. Williams, Jr., "A new expansion for the

velocity potential of a piston source," Acoustical Soc. Amer. Jn., v. 23,

1951, p. 179-184.

A small table is given (p. 182) of the values of the hypergeometric

function F( — (m — 1), —m;\;b2) which the authors denote by f2m. These

functions are actually polynomials of degree m — 1 in b2. Thus

/4 = 1 + 2b2,       fe = 1 + 6b2 + 3bK

The 6D tables give f2m(b) for

m = 1(1)8        and        b = 0(.1)1.

There is also a table of the coefficients of f2m for m = 1(1)8. These

functions occur as factors of coefficients in the expansion of the velocity

potential of a piston source in terms of Hankel functions.

D. H. L.
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905[L, P].—R. A. Clark, "On the theory of thin elastic toroidal shells,"
Jn. Math. Physics, v. 29, 1C50, p. 146-178.

Table I, p. 156, gives 4D values of

J"Jo
¡sin//(l + X sin/)} *d/

for X = 0(.1).5 and <b = 00(20)90°.
Table II, p. 167, gives 3D values of the real and imaginary parts of

T(x) and dT(x)/dx for x = 0(.05)5 where T(x) is that solution of

d2T

which is asymptotic to i/x for large (positive) x. In terms of Lommel's

function
T(x) = - !(¿x)4So,i[§(¿x)n

A. E.

906[L].—R. A. Fisher, "Gene frequencies in a cline determined by selection

and diffusion," Biometrics, v. 6, 1950, p. 353-361.

This paper contains a table of the solution q(x) of the non-linear differ-

ential equation q" = 4xg(l — q) subject to the two point boundary condition

g(0) = i, g(oo) =0. The table gives q(x) to 8D for x = 0(.02)5.7. Beyond

this range q(x) < 10~8. The table was computed on the EDSAC {MTAC,

v. 4, p. 61-65].
D. H. L.

907[L].—Carl-Erik Fröberg, "On determination of proton-proton inter-

action from scattering experiments," Arkiv for Fysik, v. 3, 1951, p. 1-23.

The Coulomb wave equation containing an additional nuclear inter-

action potential V(r) is

(1) d2y/dr2 + {k2 - 2akr^ - 1(1 + 1)>-*] y = - V(r)y.

If V(r) =0a system of two linearly independent solutions can be given by Uh

and vk, such that uk(0) = 0, uk ~ sin (kr + r¡) as r —>» and vk ~ cos (kr + tj)

as r—>», with -n = —a\og(2kr) — \lir-\- argT(ia-\-l+ 1). If V(r) is different

from zero an additional phase-shift 8(k) appears in the asymptotic expression

for the regular solution y of (1), so that y(0) = 0 and y ~ sin {kr -4- r¡ + 5(&)]

as r —> ». The author discusses in this paper the determination of V(r) if

8(k) has been determined experimentally for every positive k. The relation

between V and 5 is given by

(2) V(r) = --(2ak)2  I     or3 sin 8(a)<p(a,\) da
TT Jo

where

<p(a, X) = (-^Mft(pK(p))
\aP /p-X/(2a)

and
X = 2akr.
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To determine V(r), a knowledge of the function <p(a, X) is necessary.

Therefore the author gives asymptotic expansions for u and v. The main

part of the paper consists of two numerical tables. The first table is for

Vi(p) and vi'(p) with / = 0 for a = .01 and 0 ^ p ^ 6, a = .02, .03 and
0 ^ p ^ 4, a = .04 and 0 ^ p ^ 2, a = .06(.02).12(.04).2(.05).3(.1)1 and
0 ^ p ^ 1 : the intervals in p vary. The second table is for <p(a, X), a ranging

from .01 to oo and X from .012 to .120, with various intervals. The last

section of the paper gives the computation of V(r) for two cases, one where

sin S = const, a2 and a = .02, the other where sin S is approximately con-

stant (.79) and .006 < a < .02. Three smaller numerical tables are included.

The tables were computed on the Swedish automatic computing machine

BARK in Stockholm {MTAC, v. 5, p. 29-34].
Maria A. Weber

California Institute of Technology

Pasadena 4, California

908 [L].—R. Grammel, "Tafeln der verallgemeinerten Kreisfunktionen

Sin(4)n, Cos(4)z/, Sin(6)n, Cos(6)n, Sin(8)z;, Cos(8)z>," Ing.-Arch., v. 18,
1950, p. 251-254.

The functions x = cos (n)v and y = sin (n)v have been defined in an

earlier paper1 as the inversion of the integrals

(1) P-     flfn(t)dt=     P fn(t)dt
Jx JO

where
/„(/) = (1 - /») o-»)'».

For w = 2 these functions reduce to trigonometric functions. For any even

integer », they provide a parametric representation of the curve

(2) x" + y» = 1,

and they have certain periodic and symmetry properties with half-period

*»   =     f   fn(t)dt.
Jo

In the present paper 6D numerical tables of cos (n)v and sin (n)v are

given for » = 4, 6, 8 and v = 0(.01)1(.1)4 and for 2»/ir„ = 0(.05)1. The
earlier paper1 gives 3D values of ir„ for » = 2(1)10, », and the present

paper 6D values of %irn for n = 4, 6, 8. For » > 2 one has x < ir„ < 4.

The infinite series of the earlier paper1 have been used for the computa-

tion of the functions for 0 < v < j7r„, symmetry and periodic properties

combined with interpolation, for v > |x„. The original computations were

carried to 7 or 8D, and the author states that all six decimals printed are

correct.

Differencing of the tables was used as a check, the relation (2) was

checked for every fifth entry, and for « = 4 the connection with Jacobian

elliptic functions was used to check the tables.

The computations were carried out by F. Jindra.

A. E.

1 R. Grammel, "Eine Verallgemeinerung der Kreis- und Hyperbelfunktionen." Ing.-
Arch., v. 16, 1948, p. 188-200.
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909[L].—E. Kreyszig, "Über den allgemeinen Integralsinus Si(z, a)," Acta

Math., w. 85, 1951, p. 117-181.

The function

(1) Si (z, p) =   I    /-" sin / dt

was introduced by A. Walther.1 It is related to the incomplete gamma

function in the same manner as the ordinary sine integral, Si (z, 1), is related

to the exponential integral function. Together with the generalized cosine

integral,

(2) Ci (z, p) =   I    /-" cos / dt,

the integrals investigated in this paper account for the incomplete gamma

function, sine-, cosine-, and exponential integrals, and Fresnel's integrals.

The author investigates Si and Ci in the complex domain, z = x + iy,

p = a + iß, 0 < a < 2 in (1), and 0 < a < 1 in (2). In the theoretical

part he discusses power series expansions in ascending powers of z, the

connection with other functions including confluent hypergeometric func-

tions, asymptotic expansions as z—>», and a convergent expansion in

incomplete gamma functio'ns. He investigates the zeros and the product

representation of the functions in question and comments on the numerical

computation of the zeros.

Table 1 (p. 155-6) gives 3D values of Si (x, a) for x = 0(.2)4(.5)20,
a = .25(.25)1.75.

Table 2 (p. 157-163) gives 2D (sometimes 3S) values of the real and
imaginary parts of Si(x + iy, a) for x = 0(1)20, y = 0(1)5, a = .25(.25) 1.75.

Table 3 (p. 164) gives 2D values for the real and imaginary parts of the

first three zeros of Si (z, a) for a = 0(.25) 1.75.
Table 4 (p. 165) gives 5D values of Si (», a) for a = .05(.05)1.95, 1.99,

1.995, 1.999, 2, and 5D values of Ci (», a) for a = .05(.05)1.
Table 5 (p. 166) gives 8D values of

P(n+ l,z) =   I    e-'tndt

for z = 1, — 1, i (in the last case real and imaginary parts) and « = 0(1)10.

There are relief diagrams and charts illustrating the functions tabulated,

other diagrams; and an extensive bibliography of papers on both theory

and applications, and also of numerical tables of the sine integral and

Fresnel's integral.

The tables are said to be accurate to within a unit of the last decimal.

Although the relation

Ci (z, p) = z~» sin z — p Si (z, p + 1),        0 < a < 1,

allows one to compute Ci from Si, tables of Ci (z, p) would be a useful

addition. Together with the tables of the present paper they could serve to

compute the incomplete gamma function in the complex domain.

A. E.

1 A. Walther, "Anschauliches zur Gibbsschen Erscheinung und zur Annäherung durch
arithmetische Mittel," Math. Zeit., v. 42, 1937, p. 355-364.
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910[L].—L. M. Milne-Thomson, Jacobian Elliptic Function Tables. Dover
Publications Inc., 1950. xii, 132 p., 12.7 X 18.9 cm. $2.45.

The purpose of this book is explained in the opening sentence of its

preface. "The widespread belief that calculations involving elliptic func-

tions are difficult is due not to the nature of the calculations themselves

but to the lack of suitable numerical tables wherewith to perform them."

In fact, a glance at A. Fletcher's "Guide to Tables of Elliptic Functions"

{MTAC, v. 3, p. 229-281] suffices to show that while there is a considerable
body of numerical material for the use of a professional computer, and also

for some special purposes, yet there is no handy and easily available book

of tables which could be used by the general practitioner of the various

sciences as easily, and as safely as, say, a table of logarithms. The present

book attempts to fill this gap.
The standard notations are used, except that the parameter m = k2 is

used rather than the modulus k, sn iu\m) is written for sn (u,k), and

similarly for en, dn. The complementary parameter is mi = 1 — m.

The first 39 pages are devoted to the definition of Jacobian elliptic

functions and a description of their principal properties, examples showing

the use of the tables, complete elliptic integrals, Fourier series and power

series expansions of elliptic functions, periods, zeros, poles and residues,

formulas for special values of the argument, change of argument (including

double and half arguments and addition theorems), change of parameter

(transformations), approximations, complex arguments, differentiation,

Weierstrass's ^-function, integrals of Jacobian elliptic functions, elliptic

integrals and the zeta function, conformai mapping, factorisation of cubic

and quartic polynomials, and application to the pendulum problem. In

brief, these 39 pages give practically all the information constantly needed

when using elliptic functions.

The following tables and graphs form the main body of the book under

review.

sn(w|m). Graphs for m = 0, 5, 1 and 0 < u < 2ir (p. 41). 5D tables
with first differences for m = 0(.1).5 and u = 0(.01)2, m = .6, .7, .8 and
u = 0(.01)2.5, m = .9 and u = 0(.01)3, and m = 1 and u = 0(.01)3(.1)6.5,
with values of the quarter-period K at the foot of each column (p. 42-61).

en(u\m). Graph (p. 63) and tables (p. 64-83) in the same range as for

sn, except that for technical reasons the values for m = 1 (which are common

to en and dn) and u > 3.5 are distributed over various pages of the dn-table.

dn(u\m). Graph (p. 85) and tables (p. 86-105) again for the same values

of m and u as for sn, except that dn(w|0) = 1 for all u and need not be

given, and the column thus saved is used to accommodate tables for

en (10m 11) = dn(10w|l) up to the point (u = 1.29) where these functions

vanish (to 5D accuracy).

Complete elliptic integrals and the nome (p. 106-109). 7D tables of

K, K', E, E', and 8D tables of q = exp ( - wK'/K), and 5l = exp(-wK/K')
for m = 0(.01).5, with values of mi printed on the right margin and an

arrangement like that of trigonometric tables to enable the user to read off

values for .5 < m < 1.

Z(u). 7D table (p. 112-123) for m = 0(.1).6 and u = 0(.01)2, m = .7, .8
and u = 0(.01)2.5, and m = .9, 1 and u = 0(.01)3, all with A".
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The book is very well printed, and the legibility of the tables is excellent,

except that the table for Z(u) seems to have been reproduced photograph-

ically from the Proceedings of the Royal Society of Edinburgh (v. 52, 1931,
p. 239-250) and the considerable reduction in size makes for small figures

and a somewhat crowded page.

A. E.

911[L, V].—M. Munk & G. Rawling, Tables of Chaplygin Functions. Naval
Ordnance Laboratory Memorandum 10816, 57 pp. (1950). [Available
to government contractors only.]

This paper consists of three tables of certain functions designated by

the generic title of Chaplygin functions, which arise as particular solutions

of Chaplygin's differential equation. They are closely related to the physical

plane stream function or to the Legendre reciprocal potential of the hodo-

graph plane in the computation of plane two-dimensional compressible

flows. The adiabatic index is taken as 1.4.

This differential equation is :

¿27 ¿7

*(t - D ̂ f + [(« + 1 + ß)r - (m + l)]"¿f - \ßm(m - l)Zm = 0

in which ß = (y — l)~l = 5/2, and t is a dimensionless speed variable

related to the Mach number by r = M2(2ß + M2)"1 and to the reduce^

velocity why t = w2.

Particular solutions tabulated are Zm = F(am, bm; cm, t), whe e

a_m + bm = m + ß, ambm = —\ßm(m — 1), cm = m + 1; and Z-m, where

Z-m denotes a second independent solution ; not negative values of the

parameter m. This second solution Z_OT contains a logarithmic term and

has been normalized to approach unity as w tends to zero.

The other functions were computed from the relations

Lm = wmZm       Z_m = wmZ^m,

\f/m = p(mLm — m~lwL'm),        ^_m = p(mL^m - mr^wL'-^)

where p = (1 — w2)6'2, and a prime denotes d/dw.

Values of the functions for w = 6_i, sonic speed, were found by inter-

polation using Newton's backward formula.

The tables give 6S values of the functions

for m = 2(1)10 and w = .01(.01).5 and for w = 6_i to which latter value
of w a separate table is devoted.

The tables were produced by the computational facilities of the Naval

Ordnance Laboratory.

G. A. Rawling
U. S. Naval Ordnance Laboratory

Silver Spring, Md.

912 [L].—NBSCL, Table of the Bessel Functions Y0(z) and Yi(z) for Compt-ex
Arguments. Columbia Univ. Press, 1950. xl, 427 p. 20 X 26.5 cm. $7.50.

This volume maintains the high standards of the earlier tables, pre-

pared by the computation group under A. N. Lowan. It presents values
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of the real and imaginary parts of the second solutions Yo and Fi of

the Bessel equation, according to the magnitude p of the argument pe'*

over the range [0(0.01)10; 10D] and according to the phase angle <p

over the range [0°(5°)90°]. Auxiliary tables of F0 - (2/tt)/0 log p and

Yi - (2/tt)Ji log p + (2/irp)e-i*, over the range [p = 0(0.01)0.50; <p = 0°-
(5°)90°; 10D], are provided, to facilitate interpolation for small values of p.

In addition, the position of some of the zeros of F0 = Yi and of Fi and Yo'

off the real axis are given, together with values of Yo and Yi at some of

these points. A table of 5-point Lagrange interpolation coefficients is also

provided, for use with the tables. In the introduction are given contour

plots for the general behavior of F0 and Fi in the complex plane; and a

discussion of the properties of the functions and the method of calculation

of the tables.
Together with the earlier volume,1 giving corresponding values of Jo

and Ji for complex values of the argument, these tables will allow many

acoustical and microwave problems to be computed for complex boundary

conditions on cylindrical surfaces. It is particularly satisfactory to have

both functions / of the first kind and functions F of the second kind, for

the same values of the order and argument. Many applications of Bessel

functions require knowledge of both functions and so many tables of these

functions, heretofore published, have lost a great part of their value because

only the J's were tabulated, not the F's. In the present case the computing

group is to be congratulated in resisting the temptation to compute J2, J3

etc., and in turning to the more difficult but more useful F0 and Fi.

Perhaps some of our larger digital machines will eventually take the

place of tables, making up in speed of output what they inevitably lack in

judgment; they show little sign as yet of their ability to produce further

tables, as carefully planned, edited, and produced as the tables under

review. Perhaps, in the distant future, when we have a large digital com-

puter in each laboratory, we will not need tables of the sort reviewed here

(though the present reviewer thinks we always will). At any rate, for a

long time to come, these tables and the many others produced by Lowan's

able group will be standard and much used tools of physicists and engineers.

P. M. Morse
Mass. Inst. of Tech.

Cambridge, Mass.

1 NBSCL, Table of the Bessel Functions J¡¡(z) and J\(z) for Complex Arguments. 2nd
ed., New York, 1947 [MTAC, v. 3, p. 25].

913[L].—A. T. Price, "Electromagnetic induction in a semi-infinite con-

ductor with a plane boundary," Quart. Jn. Mech. Appl. Math., v. 3,

1950, p. 385-410.

Table I, p. 398, gives 3 and 4D values of Y-L, Y2, Z\, Z2 for £, -n = 0, .5,
1(1)5, 10 where

F„ =   I     fne~u( cos ur¡ du,       Z» =   I     fne~u( sin u-n du,
Jo Jo

fi = 1 - mV2{(1 + u*y - u2}\       ft = 2m2 - m\2{(1 + u*)i + u2}K
A. E.
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914[L].—P. Rhodes, "Fermi-Dirac functions of integral order," R. Soc.

London, Proc, v. 204A, 1950, p. 396-405.

The functions

xn(ex-v _|_  \)-ldx

arise in the theoretical treatment of assemblies of particles subject to

Fermi-Dirac statistics. For the cases « = \, f numerical tables are known.1

In the present paper « is a positive integer. A series convergent for

negative rj, a relation between Fn(v) and Fn( — in), and a polynomial approxi-

mation for large (positive) 77 are derived.

Table 1 (p. 404) gives the approximating polynomial for n = 1(1)4.

Table 2 (p. 404) gives 7D values of Fn(r¡)/n\ for « = 1(1)4, r, = -4(.1)0.

A. E.

'J. McDougall & E. C. Stoner, "The computation of Fermi-Dirac functions,"
R. Soc. London, Phil. Trans., v. 237A, 1938, p. 67-104.

C. Truesdell, "On a function which occurs in the theory of the structure of polymers,"
Annals Math., s. 2, v. 46, 1945, p. 150 [MTAC, v. 1, p. 445].

MATHEMATICAL TABLES—ERRATA

In this issue references have been made to Errata in RMT 883 (van der

Pol & Speziali), 889 (DeLury), 894 (Hartley & Pearson), 895 (Howell),

902 (Akademiâ Nauk SSSR).

190.—A. J. C. Cunningham, Binomial Factorisations. V. 2, London,

1924.

Page 189, line 6
for 39249421 read 30249421 = 1291-23431

D. H. L.

191.—A. J. C. Cunningham & H. J. Woodall, Factorisation of (yn =F 1).

London,1925.

Page 17, « = 66, delete the factor 3
« = 77, insert the factor 463.

N. G. W. H. Beeger
Nicolaas Witsenkade 10

Amsterdam C, Holland

192.—J. P. Stanley & M. V. Wilkes, Table of the Reciprocal of the Gamma
Function for Complex Argument. Computation Centre, Univ. of Toronto,

1950 {MTAC, v. 5, p. 25-26].

The following errors occurred in the preparation for press. A number

of illegible entries are also noted. Thanks are due to Miss C. M. Munford

of the University Mathematical Laboratory, Cambridge, and to Dr. van

Wijngaarden of the Mathematical Centre of Amsterdam, who helped in the

discovery of these errors.


