Errata:

V. 1; p. 75 , lat 3°, $\operatorname{dec} 13^{\circ}$, h.a. 82°, for alt $7^{\circ} 00!2$ read $7^{\circ} 06!2$.
p. 131 , lat 5°, dec 21°, h.a. 0°, for alt $64^{\circ} 30!0$ read $64^{\circ} 00!0$.
V. 2; p. 110, lat 14°, dec 11°, h.a. 23°, for alt $67^{\circ} 23!1$ read $67^{\circ} 21!3$.
p. 186 , lat 17°, dec 7°, h.a. 80°, for az $85^{\circ} 1$ read 86.1 .
V. 3; p. 31 , lat 21°, dec 7°, h.a. 20°, for alt $55^{\circ} 77!9$ read $55^{\circ} 47$!.9.
p. 112 , lat 24°, dec 12°, h.a. 44°, in alt $46^{\circ} 39!.9$ the 6 is poorly printed.
V. 5 ; p. 55 , lat 42°, dec 1°, h.a. 31°, in alt $38^{\circ} 41!9$ the 9 is poorly printed.
p. 120 , lat 44°, left hand h.a., for first 13° read 12°.
p. 121 , lat 44°, dec 30°, h.a. 31°, for az 150.0 read 153.0 .
p. 141 , lat 45°, dec 17°, h.a. 14°, for alt $26^{\circ} 43!.2$ read $26^{\circ} 42!3$.
V. 6; p. 7, lat 50°, dec 9°, h.a. 51°, for alt $16^{\circ} 14.7$ read $16^{\circ} 14.5$.
p. 58 , lat 52°, dec 10°, h.a. 88°, for az $95^{\circ} .4$ read 85.4 .
V. 7; p. 41, lat 61°, left hand h.a., for second 132° read 133°.
p. 147 , lat 65°, dec 30°, h.a. 146°, for alt $8^{\circ} 26!.7$ read $8^{\circ} 36!7$.
V. 8; p. 244, lat 79°, dec 18°, h.a. 49°, for alt $24^{\circ} 95!2$ read $24^{\circ} 59!2$.
V. 9; p. 37, lat 81°, dec 18°, h.a. 160°, for alt $9^{\circ} 3.13$ read $9^{\circ} 31!3$.
p. 162 , lat 86°, dec 11°, h.a. 62°, for alt $12^{\circ} 5^{\prime} .13$ read $12^{\circ} 51$!.3.
p. 217, lat 88°, left hand h.a., for second 132° read 133°.

Raynor L. Duncombe

U. S. Naval Observatory

Washington 25, D. C.

UNPUBLISHED MATHEMATICAL TABLES

$131[\mathrm{E}, \mathrm{L}] .-\mathrm{R} . \mathrm{M}$. Coghlan \& R. C. T. Smith, Table of roots of $\sin z=k z$. Typewritten Manuscript, 2 leaves, on deposit in UMT File and with Aeronautical Research Laboratories of the Department of Supply, Box 4331 G.P.O. Melbourne, Australia.
The table gives 6D values of the real and imaginary parts of the first 11 zeros of $\sin z+k z$ for $\pm k=0(.25) 1$. [The results for $k=1$ have been published; see $M T A C$, v. 3, p. 414, RMT 611.]

132[F].-R. A. Lienard, Tables of the factors of $2^{n}-n-2$ and $2^{n}-n-3$
for $n=1(1) 1000$.
These two functions of n are remarkable in that they do not seem to represent primes. In fact 3 is the only prime that they are known to represent. Most values have small prime factors. In this respect these functions resemble Cullen's ${ }^{1}$ function $1+x 2^{x}$. At least one prime factor of $2^{n}-n-2$ is given for $n \leq 1000$ except for the 17 values: $n=253,323,355,455$, $493,497,517,535,559,589,649,713,749,815,895,901,979$. At least one prime factor of $2^{n}-n-3$ is given for $n \leq 1000$ except for the 12 values: $n=162,210,254,320,330,416,590,650,738,780,872,914$.
R. A. Lienard

95 Rue Béchevelin
Lyon, France
${ }^{1}$ A. J. C. Cunningham \& H. J. Woodall, "Factorisation of $Q=(2 q \mp q)$ and ($q \cdot 2^{q} \mp$ 1)," Messenger Math., v. 47, 1917, p. 1-38.

133[F].-F. L. Miksa, Table of primitive Pythagorean triangles with their perimeters arranged in ascenaing order from 119992 to 499998.506 typewritten leaves on deposit in UMT File.
This table is a continuation of UMT 111 [MTAC, v. 5, p. 28], a table by A. S. Anema to 120000 . The introduction gives a table showing the number of triangles whose perimeters do not exceed P for $P=120000$ (10000) 500000. The total number of these triangles is 35114. Lehmer's asymptotic formula gives 35115 . Similar data are given for pairs of triangles having equal perimeters of which there are 1750 . There are 65 cases of 3 , and one case of 4 isoperimetric triangles.
F. L. Miksa

613 Spring Street

Aurora, Illinois
134[L].-Y. L. Luke \& D. Ufford, Tables of $\int_{0}^{\infty}(z t)^{-1}\left(z+t-\sqrt{z^{2}+t^{2}}\right) e^{-i t} d t$. 8 mimeographed leaves on deposit in UMT File and also available from Midwest Research Institute, Kansas City 2, Missouri.
The tables give the real and imaginary parts $U+i V$ of the integral given in the title together with the function

$$
U+\log 2 z+\gamma-1
$$

6 D values of the three functions are given for $z=0(.01) \cdot 1(.1) 4(.2) 5$.
135[L].-J. E. Wilkins Jr. \& Nina Kropoff, Table of Laguerre Functions. Seven mimeographed leaves on deposit in the UMT File.
The table gives 4D values of

$$
L_{n}(x) / n!=M(-n, 1, x)=\sum_{k=0}^{n}(-x)^{k}\binom{n}{\mathbf{k}} / k!
$$

for $n=2(1) 7$ and $x=0(.1) 10(.2) 20$. [See MTAC, v. 1, p. 361, 425, v. 2, p. 31, 267.]
J. E. Wilkins, Jr.

Nuclear Development Associates
80 Grand Street
White Plains, N. Y.

AUTOMATIC COMPUTING MACHINERY

Edited by the Staff of the Machine Development Laboratory of the National Bureau of Standards. Correspondence regarding the Section should be directed to Dr. E. W. Cannon, 415 South Building, National Bureau of Standards, Washington 25, D. C.

Technical Developments

Provision for Expansion in the SEAC

In developing the SEAC, two divergent objectives had to be attained. The first objective was to get a modest performance high-speed computer into operation at the earliest possible date; the second objective was to

