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Technical Developments

Fundamental Concepts of the Digital
Differential Analyzer Method of

Computation
Introduction.—Two fundamentally different approaches have been

developed in using machines as aids to calculating. These have come to be

known as analog and digital approaches. There have been many definitions

given for the two systems but the most common ones differentiate between

the use of physical quantities and numbers to perform the required automatic
calculations.

In solving problems where addition, subtraction, division and multipli-

cation are clearly indicated by the numerical nature of the problem and the

data, a digital machine for computation is appropriate.

When problems have involved calculus methods, as, for instance, in the

solution of differential equations, the analog computer has often been used,
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as the process of integration seems, psychologically at least, to be more aptly

handled by analog devices. These devices have been mechanical or electronic

integrators. However, the actual process of integration, if one considers the

numerical basis for its origin is, in a sense, a numerical additive process. Thus,

digital computers "integrate" by successive additions.

By bridging the gap between these two approaches, a new series of
instruments for computation is possible.

The method of computation used in a digital differential analyzer resulted

from the adoption of a new point of view. Considering the operations involved

in the solution of differential equations, it is possible, with this new approach,

to obtain many of the advantages of a digital computer and also the essential

advantages of an analog differential analyzer. The result is a different type of

digital "logic" from that used in the general purpose digital computers.

The advantages gained by the new method in solving ordinary differential

equations of any type are:

1. Ease of preparing problems—arising from the use of analog differ-

ential analyzer methods instead of numerical methods in the coding process.

2. Increase in computation speed over equivalent general purpose digital

computer approaches and equality in speed to some analog methods.

3. Increase in accuracy over analog differential-analyzer procedures.

4. Repeatability and ease of error analysis inherent in the digital

method.
5. Small size—In certain embodiments the digital differential analyzer

can be much smaller, have fewer tubes and components, weigh and cost less

than analog differential analyzers or any of the general purpose digital

computers. This is particularly true when the number of integrators needed

to solve the equations becomes large.
Review of Analog Differential Analyzer Theory.—There are two different

ways of explaining the digital differential analyzer method. The first is a

qualitative explanation which follows the analog viewpoint and points out

the first advantage. The second is a quantitative numerical explanation

which shows the error analysis possibilities and the successive-additions

method of integration which actually takes place.

To appreciate the first explanation, it is necessary to review the principles

of the analog differential analyzer. In solving an equation such as,

dhu dw
(1) -dJ-v-dJ--"*-0

dw
the analog differential analyzer represents the variables w, t, -y- etc., by

mechanical rotations of shafts or by variations of voltages in electronic

circuits. The rates of shaft rotations or of changes in voltages are always

proportional to the rates of change of the variables.

Integration is accomplished by a mechanical wheel and disc integrator or

an operational amplifier used as an integrator. Other mathematical opera-

tions such as multiplication and addition of variables in the equation are

performed either by integrators or other devices, mechanical and electronic.

Integrators and other units are interconnected in such a manner as to

produce an analog of the differential equation. The set is "driven" by a
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single shaft or voltage representing the independent variable (t of Equation
1). The w or dependent variable shaft or voltage varies in accordance with

the actual solution to the equation as t varies. For a given set of initial condi-

tions, a solution to Equation l,w= f(t), is produced as either a graph or a

set of tabular values of a» as a function of t.

The integrator is the key to the machine's operation, all other units being

straightforward in comparison. It may be regarded as a "black box" with

two inputs and one output shown schematically in Figure 1.

Fig. 1.

The inputs1 dx and dy are the rates of change of some x and y variables in an
equation as represented physically by shafts rotating or voltages changing.

The differential notation is used because the same dt is inherently used
throughout the machine. The inputs and outputs are related by the inte-
grator Equation 2.

(2) dz = KYdx,

where Y = Sdy. The constant K is determined by the physical properties of
the integrator.

In the mechanical integrator the dy input causes a worm gear to move a

small disc across the surface of a large wheel (see Figure 2) such that its

distance from the center of the wheel is Y. The dx input turns the wheel and
friction causes the disc to rotate at a speed dz.
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Fig. 2.

In the electronic integrator the dy input is a varying voltage, the dx

input is always time and the z voltage is produced by using the integrating

characteristics of capacitors in connection with a feedback amplifier to
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produce linearity. It should be noted that to interconnect integrators it is

necessary that the inputs and outputs all be of the same form.
Qualitative Explanation of the Digital Integrator.—The digital integrator

is the heart of the new type of computer, the digital differential analyzer, and

may be visualized as a black box with the same schematic (Figure 1) and the

same equation relating its inputs and output (Equation 2). The dx, dy, and

dz variables are represented by pulse rates, i.e., the rates of occurrence of

streams of electronic pulses entering or leaving the integrator. As stated

before the equation relating these pulse rates is still Equation 2, and the

inputs and output are of the same form.
Without describing the nature of such an integrator, it can be seen that

the two properties above will allow these black boxes to be intercoupled, in

the same manner as were the analog differential analyzer integrators, to

cßw

dw
sr

dw
dt
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Fig. 3.

solve ordinary differential equations. The same techniques of intercoupling

integrators to perform various operations such as multiplication, scaling

function generation, division, etc., can be used. A set of digital integrators

intercoupled by wires carrying pulse streams can be "driven" by a pulse

source representing the independent variable. A solution is produced as a

set of tabular values and a graph can be produced. The same schematic or

connection diagram can be used for both the digital and the analog differ-

ential analyzers. Only the K in Equation 2 changes. Such a schematic is

illustrated in Figure 3 for the solution of Equation 1.

Two distinct advantages of the digital over the analog integrator in

addition to increased accuracy should be noted at this point. It will be
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observed that Figure 3 contains no adders. The terms

(dw \ ( dw \
— I dw, and w d I -j- I

created by the lower four integrators would in the analog machines have to be

added in extra units, known as adders, to form d Iw-r; + wt) = d

to be fed back into the "Y" input of the upper integrator. The addition is

indicated on the diagram by a box with YJ sign.

Since the outputs of these integrators in the digital case are pulse

streams, they may be mixed together directly and sent into the same input,

provided, of course, that the pulses do not coincide in time. In several

embodiments of the digital differential analyzer this is the case. If time

coincidence does occur, it is only necessary to delay one pulse with respect to
another.

The other advantage is the superior ability of the digital integrator to

receive the output of another integrator at its "dx" input. This greatly

facilitates multiplication, division and the solution of non-linear equations

without the use of special devices.

T
0- -dx

BINARY REGISTERS

Fig. 4.

LSD

Embodiments of the Digital Integrator.—The "contents" of the black

box digital integrator may take many physical forms and still have the ex-

ternal properties described. All of the forms so far devised have one common

property. Two numbers appear within the box and may be designated as a

coupled pair. These two numbers, always labelled Y and R, may appear in

any one of several physical forms. Two specific examples are: Numbers stored

in vacuum tube registers made up of two-stable-state devices, and numbers

appearing in pulse form on a cathode ray tube screen. The numbers may be

of any length and in any number base system. For convenience they will

usually be represented in this paper schematically as appearing in two regis-

ters as binary numbers. (See Figure 4.) Some other methods of storing the

Y and R numbers are: relays, mechanical registers as on desk calculators,

magnetic tapes or drums, and mercury or other delay lines. Each of the

storage media must be capable of changing the numbers digitally by the

receipt of information at the inputs to the box.

In the integrator diagram in Figure 4, the Y register acts as a counter
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when receiving dy pulses and in a sense integrates the dy pulse rate to pro-

duce the number Y. The dx pulses are treated as instructions to transfer in

an additive manner the number Y into the R register without removing Y

from the Y register. If the R register contained some previous R before the

transfer, it contains R + Y after the transfer.

Th'e R register will of course overflow after a certain number of transfers.

Each time it does so, a pulse is transmitted from the integrator as a dz pulse.

The Y and R registers have the same length and capacity and, if binary

registers are used, the capacity is 2K, where N is the number of binary stages

in each register.

By qualitative analysis of the relations between the variables, it may be

seen that Equation 2, dz = KYdx, does hold for the integrator, where

K = 1/2" and Fis regarded as an integer, provided that F remains constant.

In other words if F = 1 the output rate dz will be 1/2" dx, since it requires

dz-»

Transfer method.

Fig. 5.

2" additions of Y to R to cause an overflow. If Y = 2N, or the register is

filled to capacity, an R overflow or dz pulse will occur for every dx pulse. In

this case, dz = dx. In general, dz is certainly proportional to dx for a con-

stant F and is proportional to Y/2N for constant dx.
Two fundamentally different ways exist (as well as combinations of the

two) to cause the transfer of Y to R to take place. In the one described above,

called the transfer method, a single pulse at the dx input caused the entire Y

number to be added into R. In the second system a large number of dx pulses

are required to transfer Y to R. The Y number may change during this

transfer process so that the number of stages required in the register for the

same accuracy is larger. This method is called the sieve method.

Figures 5 and 6 illustrate electronic methods of causing the two types

of transfer. There are, of course, many other electronic ways of effecting the

transfer.
In Figure 5 the additive transfer of Y into R by a single dx pulse is accom-

plished by transmitting the dx pulse into successive gates and delays. The
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gates are controlled (dashed lines) by the Y register flip-flops, or two-state

devices. If a flip-flop is in its "1" state (binary digit one at that digit position),

its gate is "open" and the dx pulse passes up to one of the R register flip-flops

causing it to trigger. If the Y flip-flop is in its "0" state (binary digit zero),

the gate is closed and the pulse does not pass through.

If an R flip-flop triggers from "1" to "0" it transmits a "carry" pulse to

the next flip-flop to the left. The dx pulse in the meantime is being delayed

through D, and if it passes the next gate it will arrive at the pulse mixer M

non-coincident with the carry pulse from the R flip-flop. Any carries from the

left R flip-flop represent overflow pulses and are transmitted to the dz output.

The sieve method of Figure 6 requires 2" dx pulses to transfer Y into R.

A third register is used to distribute the dx pulses through the gates controlled

by the F flip-flops in such a manner that when the outputs from each gate are

mixed they are non-coincident and can be accumulated in R. The entire

operation resembles the action of sieving the dx pulses through the gates.

dx- FFT FF H ff

sr
FF

6   I

FF FF

■dZ

-dy

Sieve method.

Fig. 6.

Carry pulses are taken from the third register flip-flops at different times to

feed to the gates and to trigger the next flip-flop to the right. This means that

each set of pulses reaching the gates as the operation proceeds from left to

right is anticoincident with all preceding sets and equal to half the adjacent

left hand set. The effect of 2N (23 in case shown) dx pulses for constant F will

be to transfer Y into R.

When other storage methods are used, the electronic operations change.

For instance with magnetic drum storage, the two numbers are stored in two

parallel channels, and the digits of F and R appear at magnetic read heads

one digit at a time in serial fashion. The addition of F to R is then that of

time-serial binary addition. The same thing would be true of any serial or

delay type of number storage.

Quantitative Explanation of the Digital Integrator.—The second or
quantitative explanation of the digital differential analyzer method will be

covered rigorously in another paper. Briefly, the successive addition process

of multiplying an ordinate of a curve,  F =/(x) (see Figure 7), by a Aac
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increment and adding the resulting products to get the area under a curve is

really being carried out in an integrator.

If the R register were of unlimited length and each dx pulse were assumed

to have a value of 1, then the successive additions of F to R would produce a

number similar to the sum of the area of the rectangles under the curve of

Figure 7 (assuming the F values to be correct). Since the R register is broken

off and dz pulses transmitted, it can be seen the sum of these dz pulses will be

in error from the rectangular areas by the remainder R in the R register.

The total error consists of this roundoff error plus the truncation error differ-

ence between the true curve and the rectangles. Automatic corrections of

various electronic types can be and have been made for both of these errors.

In the future mathematical paper it will be demonstrated that the total

truncation and roundoff error for many equations will not exceed the two

least significant binary digits of a F register.

Fig. 7.

Further Advantages of the Digital Integrator.—In the foregoing dis-

cussion "black boxes" comprising digital integrators which have two funda-

mental properties were described. Ordinarily, to obtain 50 "black boxes" it

would be necessary to use 50 times the equipment required for one box. This

is certainly true in case of the mechanical and electronic integrators. How-

ever, where the integrators consist merely of paired numbers operating on

each other in accordance with the methods already described, it becomes

possible to time share operational circuits among all of the number pairs if

they are stored in a serial or delay type of memory and the integrators are

strung out in a line timewise.

One set of electronic circuits can operate on all integrators in sequence,

or rather on all paired numbers in sequence. An integritor, as such, does not

really exist when such a system is used. In a scheme like this it is easily

seen that no coincidence problems exist, since no two integrator outputs
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occur simultaneously. It will also be seen that the amount of equipment does

not increase linearly with the number of integrators and that beyond a

certain point the digital differential analyzer is smaller and involves less

components than the analog.machine.

The problems of handling the signs of the variables and their derivatives

and of the scales or scale factors for a problem will also be covered in detail

in a future paper. They are similiar to analog sign and scale problems except

that special provisions must be made for handling signs, and scaling takes

place digitally.
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1V. Bush and others use the *, y, and z = y dx notation for inputs and outputs.
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