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TECHNICAL DEVELOPMENTS

Fundamental Concepts of the Digital
Differential Analyzer Method of
Computation

Introduction.—Two fundamentally different approaches have been
developed in using machines as aids to calculating. These have come to be
known as analog and digital approaches. There have been many definitions
given for the two systems but the most common ones differentiate between
the use of physical quantities and numbers to perform the required automatic
calculations.

In solving problems where addition, subtraction, division and multipli-
cation are clearly indicated by the numerical nature of the problem and the
data, a digital machine for computation is appropriate.

When problems have involved calculus methods, as, for instance, in the
solution of differential equations, the analog computer has often been used,
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as the process of integration seems, psychologically at least, to be more aptly
handled by analog devices. These devices have been mechanical or electronic
integrators. However, the actual process of integration, if one considers the
numerical basis for its origin is, in a sense, a numerical additive process. Thus,
digital computers ‘‘integrate’ by successive additions.

By bridging the gap between these two approaches, a new series of
instruments for computation is possible.

The method of computation used in a digital differential analyzer resulted
from the adoption of a new point of view. Considering the operations involved
in the solution of differential equations, it is possible, with this new approach,
to obtain many of the advantages of a digital computer and also the essential
advantages of an analog differential analyzer. The result is a different type of
digital ““logic” from that used in the general purpose digital computers.

The advantages gained by the new method in solving ordinary differential
equations of any type are:

1. Ease of preparing problems—arising from the use of analog differ-
ential analyzer methods instead of numerical methods in the coding process.

2. Increase in computation speed over equivalent general purpose digital
computer approaches and equality in speed to some analog methods.

3. Increase in accuracy over analog differential-analyzer procedures.

4. Repeatability and ease of error analysis inherent in the digital
method.

5. Small size—In certain embodiments the digital differential analyzer
can be much smaller, have fewer tubes and components, weigh and cost less
than analog differential analyzers or any of the general purpose digital
computers. This is particularly true when the number of integrators needed
to solve the equations becomes large.

Review of Analog Differential Analyzer Theory.—There are two different
ways of explaining the digital differential analyzer method. The first is a
qualitative explanation which follows the analog viewpoint and points out
the first advantage. The second is a quantitative numerical explanation
which shows the error analysis possibilities and the successive-additions
method of integration which actually takes place.

To appreciate the first explanation, it is necessary to review the principles
of the analog differential analyzer. In solving an equation such as,

d*w dw
1 '&t';—‘wzt-—-wt=0

dw
the analog differential analyzer represents the variables w, ¢, i etc., by

mechanical rotations of shafts or by variations of voltages in electronic
circuits. The rates of shaft rotations or of changes in voltages are always
proportional to the rates of change of the variables.

Integration is accomplished by a mechanical wheel and disc integrator or
an operational amplifier used as an integrator. Other mathematical opera-
tions such as multiplication and addition of variables in the equation are
performed either by integrators or other devices, mechanical and electronic.

Integrators and other units are interconnected in such a manner as to
produce an analog of the differential equation. The set is “driven” by a
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single shaft or voltage representing the independent variable (¢ of Equation
1). The w or dependent variable shaft or voltage varies in accordance with
the actual solution to the equation as ¢ varies. For a given set of initial condi-
tions, a solution to Equation 1, w = f(¢), is produced as either a graph or a
set of tabular values of w as a function of ¢

The integrator is the key to the machine’s operation, all other units being
straightforward in comparison. It may be regarded as a “black box” with
two inputs and one output shown schematically in Figure 1.
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FiG. 1.

The inputs! dx and dy are the rates of change of some x and y variables in an
equation as represented physically by shafts rotating or voltages changing.
The differential notation is used because the same d¢ is inherently used
throughout the machine. The inputs and outputs are related by the inte-
grator Equation 2,

2 dz = KVdx,

where ¥ = S dy. The constant K is determined by the physical properties of
the integrator.

In the mechanical integrator the dy input causes a worm gear to move a
small disc across the surface of a large wheel (see Figure 2) such that its
distance from the center of the wheel is ¥. The dx input turns the wheel and
friction causes the disc to rotate at a speed dz.

ch\ d LETN N dy
7/ : y

wheel

dx
F1G. 2.

In the electronic integrator the dy input is a varying voltage, the dx
input is always time and the s voltage is produced by using the integrating
characteristics of capacitors in connection with a feedback amplifier to
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produce linearity. It should be noted that to interconnect integrators it is
necessary that the inputs and outputs all be of the same form.

Qualitative Explanation of the Digital Integrator.—The digital integrator
is the heart of the new type of computer, the digital differential analyzer, and
may be visualized as a black box with the same schematic (Figure 1) and the
same equation relating its inputs and output (Equation 2). The dx, dy, and
dz variables are represented by pulse rates, i.e., the rates of occurrence of
streams of electronic pulses entering or leaving the integrator. As stated
before the equation relating these pulse rates is still Equation 2, and the
inputs and output are of the same form.

Without describing the nature of such an integrator, it can be seen that
the two properties above will allow these black boxes to be intercoupled, in
the same manner as were the analog differential analyzer integrators, to
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solve ordinary differential equations. The same techniques of intercoupling
integrators to perform various operations such as multiplication, scaling
function generation, division, etc., can be used. A set of digital integrators
intercoupled by wires carrying pulse streams can be ‘‘driven” by a pulse
source representing the independent variable. A solution is produced as a
set of tabular values and a graph can be produced. The same schematic or
connection diagram can be used for both the digital and the analog differ-
ential analyzers. Only the K in Equation 2 changes. Such a schematic is
illustrated in Figure 3 for the solution of Equation 1.

Two distinct advantages of the digital over the analog integrator in
addition to increased accuracy should be noted at this point. It will be
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observed that Figure 3 contains no adders. The terms

dw dw
wdt, t dw, (-gt-) dw, and wd (E)

created by the lower four integrators would in the analog machines have to be
dw
dg
to be fed back into the “¥" input of the upper integrator. The addition is
indicated on the diagram by a box with 3 sign.

Since the outputs of these integrators in the digital case are pulse
streams, they may be mixed together directly and sent into the same input,
provided, of course, that the pulses do not coincide in time. In several
embodiments of the digital differential analyzer this is the case. If time
coincidence does occur, it is only necessary to delay one pulse with respect to
another.

The other advantage is the superior ability of the digital integrator to
receive the output of another integrator at its ‘“dx’ input. This greatly
facilitates multiplication, division and the solution of non-linear equations
without the use of special devices.

added in extra units, known as adders, to form d (w ‘Z—’:} 4+ w t) =d (
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Embodiments of the Digital Integrator.—The ‘“contents’ of the black
box digital integrator may take many physical forms and still have the ex-
ternal properties described. All of the forms so far devised have one common
property. Two numbers appear within the box and may be designated as a
coupled pair. These two numbers, always labelled ¥ and R, may appear in
any one of several physical forms. Two specific examples are: Numbers stored
in vacuum tube registers made up of two-stable-state devices, and numbers
appearing in pulse form on a cathode ray tube screen. The numbers may be
of any length and in any number base system. For convenience they will
usually be represented in this paper schematically as appearing in two regis-
ters as binary numbers. (See Figure 4.) Some other methods of storing the
Y and R numbers are: relays, mechanical registers as on desk calculators,
magnetic tapes or drums, and mercury or other delay lines. Each of the
storage media must be capable of changing the numbers digitally by the
receipt of information at the inputs to the box.

In the integrator diagram in Figure 4, the Y register acts as a counter
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when receiving dy pulses and in a sense integrates the dy pulse rate to pro-
duce the number Y. The dx pulses are treated as instructions to transfer in
an additive manner the number ¥ into the R register without removing ¥
from the Y register. If the R register contained some previous R before the
transfer, it contains R + Y after the transfer.

The R register will of course overflow after a certain number of transfers.
Each time it does so, a pulse is transmitted from the integrator as a dz pulse.
The Y and R registers have the same length and capacity and, if binary
registers are used, the capacity is 2¥, where N is the number of binary stages
in each register.

By qualitative analysis of the relations between the variables, it may be
seen that Equation 2, dz2 = KY dx, does hold for the integrator, where
K = 1/2¥ and Y isregarded as an integer, provided that ¥ remains constant.
In other words if ¥ = 1 the output rate dz will be 1/2% dx, since it requires
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2¥ additions of ¥ to R to cause an overflow. If ¥ = 2%, or the register is
filled to capacity, an R overflow or dz pulse will occur for every dx pulse. In
this case, dg = dx. In general, dz is certainly proportional to dx for a con-
stant ¥ and is proportional to ¥/2¥ for constant dx.

Two fundamentally different ways exist (as well as combinations of the
two) to cause the transfer of ¥ to R to take place. In the one described above,
called the transfer method, a single pulse at the dx input caused the entire ¥
number to be added into R. In the second system a large number of dx pulses
are required to transfer ¥ to R. The Y number may change during this
transfer process so that the number of stages required in the register for the
same accuracy is larger. This method is called the sieve method.

Figures 5 and 6 illustrate electronic methods of causing the two types
of transfer. There are, of course, many other electronic ways of effecting the
transfer.

In Figure 5 the additive transfer of ¥ into R by a single dx pulse is accom-
plished by transmitting the dx pulse into successive gates and delays. The
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gates are controlled (dashed lines) by the Y register flip-flops, or two-state
devices. If a flip-flop isin its ‘‘1” state (binary digit one at that digit position),
its gate is “‘open’’ and the dx pulse passes up to one of the R register flip-flops
causing it to trigger. If the ¥ flip-flop is in its ‘0" state (binary digit zero), -
the gate is closed and the pulse does not pass through.

If an R flip-flop triggers from “1”” to *‘0” it transmits a ‘“‘carry”’ pulse to
the next flip-flop to the left. The dx pulse in the meantime is being delayed
through D, and if it passes the next gate it will arrive at the pulse mixer M
non-coincident with the carry pulse from the R flip-flop. Any carries from the
left R flip-flop represent overflow pulses and are transmitted to the dz output.

The sieve method of Figure 6 requires 2V dx pulses to transfer ¥ into R.
A third register is used to distribute the dx pulses through the gatescontrolled
by the ¥ flip-flops in such a manner that when the outputs from each gate are
mixed they are non-coincident and can be accumulated in R. The entire
operation resembles the action of sieving the dx pulses through the gates.

ax ~ FE FE FE B
> > > - d2Z
EE [ FF FE dy
Y
Sieve method.
F1G. 6.

Carry pulses are taken from the third register flip-flops at different times to
feed to the gates and to trigger the next flip-flop to the right. This means that
edch set of pulses reaching the gates as the operation proceeds from left to
right is anticoincident with all preceding sets and equal to half the adjacent
left hand set. The effect of 2¥ (22 in case shown) dx pulses for constant ¥ will
be to transfer ¥ into R.

When other storage methods are used, the electronic operations change.
For instance with magnetic drum storage, the two numbers are stored in two
parallel channels, and the digits of ¥ and R appear at magnetic read heads
one digit at a time in serial fashion. The addition of ¥ to R is then that of
‘time-serial binary addition. The same thing would be true of any serial or
delay type of number storage.

Quantitative Explanation of the Digital Integrator.—The second or
quantitative explanation of the digital differential analyzer method will be
covered rigorously in another paper. Briefly, the successive addition process
of multiplying an ordinate of a curve, ¥ = f(x) (see Figure 7), by a Ax
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increment and adding the resulting products to get the area under a curve is
really being carried out in an integrator.

If the R register were of unlimited length and each dx pulse were assumed
to have a value of 1, then the successive additions of ¥ to R would produce a
number similar to the sum of the area of the rectangles under the curve of
Figure 7 (assuming the Y values to be correct). Since the R register is broken
off and dz pulses transmitted, it can be seen the sum of these dz pulses will be
in error from the rectangular areas by the remainder R in the R register.
The total error consists of this roundoff error plus the truncation error differ-
ence between the true curve and the rectangles. Automatic corrections of
various electronic types can be and have been made for both of these errors.
In the future mathematical paper it will be demonstrated that the total
truncation and roundoff error for many equations will not exceed the two
least significant binary digits of a Y register.
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Further Advantages of the Digital Integrator.—In the foregoing dis-
cussion “black boxes’’ comprising digital integrators which have two funda-
mental properties were described. Ordinarily, to obtain 50 “black boxes” it
would be necessary to use 50 times the equipment required for one box. This
is certainly true in case of the mechanical and electronic integrators. How-
ever, where the integrators consist merely of paired numbers operating on
each other in accordance with the methods already described, it becomes
possible to time share operational circuits among all of the number pairs if
they are stored in a serial or delay type of memory and the integrators are
strung out in a line timewise.

One set of electronic circuits can operate on all integrators in sequence,
or rather on all paired numbers in sequence. An integrator, as such, does not
really exist when such a system is used. In a scheme like this it is easily
seen that no coincidence problems exist, since no two integrator outputs
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occur simultaneously. It will also be seen that the amount of equipment does
not increase linearly with the number of integrators and that beyond a
certain point the digital differential analyzer is smaller and involves less
components than the analog.machine. '

The problems of handling the signs of the variables and their derivatives
and of the scales or scale factors for a problem will also be covered in detail
in a future paper. They are similiar to analog sign and scale problems except
that special provisions must be made for handling signs, and scaling takes
place digitally. '
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the ideas for much of the material this article covered: D. E. ECKpAHL,
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1V. BusH and others use the x, y, and z = y dx notation for inputs and outputs.
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