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NOTES

129. Zeros of In+\(x)Jn(x) + Jn+i(x)In(x). A table of the first ten

zeros of fn(x) = In+i(x)Jn(x) + Jn+1(x)In(x) for n = 0, 1, 2, and 3, was

published by Airey1. This table is extended herewith to include all zeros

< 20. For the sake of completeness, Airey's values are reproduced here, with

the kind permission of the editors of the Proceedings.

Airey's values were compared with those of Carrington,2 who gave all

zeros < 16. Corresponding to n = 0, Airey gave the first zero as 3.1955,

whereas Carrington gave 3.1961. This entry was recomputed; the true value

to five decimals is 3.19622. Other entries in Airey's differ from Carrington's

by at most a unit in the third decimal place, where both authors give the

same zeros. Differences of Airey's values show no obvious errors, but his

entries were not otherwise verified by us.

G. Franke3 published the first two zeros for n = 4 and the first zero for

« = 5, 6, and 7, to one, two, or three decimals. Comparison of his entries

with those published here shows that his last place is not correct.

The entries given here were computed by inverse interpolation in

[exp(— x)2fn(x), with the aid of values of 7„(x) which were made available

to us in manuscript form by J. C. P. Miller. The extensive tables of Jn(x)

of the Harvard Computation Laboratory provided the other required tabular

values. Gladys Franklin of the NBSINA performed the computations.

Entries for « > 3 are correct to within ±.00002. The work was carried out

with the aid of funds provided by the ONR, in connection with an eigen-

value problem investigated by N. Aronszajn.


