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933[A, K].—M. T. L. Bizley, "A note on the variance-ratio distribution,"

Institute of Actuaries Students' Soc, Jn., v. 10, 1950, p. 62-64.

A folded page following p. 64 gives a table of the binomial coefficients

(?) for t < m = 1(1)20. The table is used in this case to facilitate the

evaluation of

I   yn(y + /fe)~m-1áy.

D. H. L.

934[A, D].—L.Îà Neïshuler, Tablifsy Perevoda Prtàmougol'nykh De-
kartovykh Koordinat v Poltàrnye [Tables for the Transformation of Rec-

tangular Cartesian into Polar Coordinates]. Moscow and Leningrad,

Gostekhizdat, 1950, 292 p. 16 X 33.6 cm. Boards, 33.75 roubles.

This is the fourth, and by far the most elaborate, table of Neïshuler to

which we have made reference (see MTAC, v. 1, p. 7, for tables of 1930 and

1933 ; v. 2, p. 203-204, for table of 1945). It was published in November 1950,
in an edition of 5000 copies, and seems to have met a real need, since the

edition was sold out in less than a year.

It is a table giving the polar coordinates (s, a) corresponding to rectangular

coordinates (x, y), where s = (x2 + y2)*, a = arctan (y/x); x and y are

positive integers up to 10000. The main table occupies very large quarto

pages 7-290. For using the tables it is generally supposed that y is not less

than x. If in a given case x is the greater, the x is called y* and the angle

(90° - a).
The first column on each page is for y, and the first range of values is

1000 to 1090. To this range, beginning on page 7, and ending with the first

column on page 12, corresponds a series of ranges for x : 0-10(5), 10-20(15),
••■, 180-200(190), 520-550(535), •••, 1070-1105(1105), the maximum
terminal value of x approximating to 1090—the maximum terminal value of

y. The next range of y is 1090-1180, and the last 9910-10000.
Under each of the x-ranges are columns headed s, a, A. The values in the

s and a columns correspond exactly to the series of x values above in brackets

( ), namely : 5, 15, • • •, 190, • • •, 535, • • •, 1105. All of the values of x in this
series except the last (a range boundary-value) are means of the end-values

of the «-ranges. Throughout the table the means are almost invariably

chosen. The s and a corresponding to other values of x, are got by interpo-

lation—using the values of As and Aa given in the A column. In the range of

y chosen as illustration the As and A a never have, more than 9 entries but on

the last pages of the table these run up to 22.

For values of y less than 1000, such for example, as y = 12, x = 9, the

table-entry for y = 1200, x = 900 would naturally be used. Similarly for
other cases of y less than 1000, the final results obtained for s are usually to

one place of decimals, and the angle to the nearest tenth of a minute.

Illustrative examples are worked out on pages 4-6. No previously published

table of this kind compares with it in extent.

The small tables of W. J. Seeley, and of J. C. P. Miller have been re-
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viewed in MTAC, v. 2, p. 22-23, and the single-page table of Jahnke &
Emde, p. 17 of the more elementary section, is well known.

From an entry in MTAC, v. 3, p. 340, we learned that among "Tables

completed or almost completed," by 1948, were "Cartesian to Polar Conver-

sion Tables," supervised by E. H. Neville: "To give, for integral values of

x, y, with y < x < 105, values to 12 figures of r with 0 in degrees, and of In r

with 0 in radians."

R. C. Archibald
Brown University

Providence, R. I.

935[A].—H. S. Uhler, (a) "Many-figure approximations to V2, and distri-
bution of digits in v2 and l/v2," Nat. Acad. Sei., Washington, Proc,

v. 37, 1951, p. 63-67. (b) "Approximations exceeding 1300 decimals for
v3~, l/v3~, sin (7r/3) and distribution of digits in them," Nat. Acad. Sei.,
Washington, Proc, v. 37, 1951, p. 443-447.

In (a) the value of v2 is given to 1544D. In (b) values of v3, 1/V3", and
sin (jt/3) = ^v5 are given to 1316D. In (a) are given data on the distribution

of the digits in v2 and l/v2, namely, the values of x2 and the corresponding

probabilities of obtaining such distributions from a normal population

\_MTAC, v. 4, p. 109]. These data are remarkably small for l/v2 but
reasonably sized for v2. Corresponding data are given for the constants in

(b). These are all fairly large. A detailed comparison of distributions of digits

in 1/V2" and l/v3" is given in a separate table.

Agreement with Coustal's value of v2 \_MTAC, v. 4, p. 144] was exact.

D. H. L.

936[D, F, L]—John Todd. Table of Arctangents of Rational Numbers. Na-
tional Bureau of Standards AMS No. 11, Washington 1951, xii + 105
p. 26 X 19.7 cm. Price $1.50.

This work gives two tables. Table 1 gives for every pair of integers m, n

with 0 < m < n < 100 the principal values of arctan m/n and arccot m/n

in radians to 12D. In addition are given m2 + n2 and the canonical repre-

sentation of arctan m/n as a linear combination, with integer coefficients, of

"irreducible" arctangents of integers.

For r an integer, arctan r is called reducible in case it can be expressed as a

linear combination of arctangents of integers less than r. Table 2 gives a list

of reducible arctangents of integers < 2089 together with the unique reduc-

tions in terms of irreducible arctangents. Thus the entry

601    2(1) + 1(24) - 1(25)

is a statement of the fact that

arctan 601 = 2 arctan 1 + arctan 24 — arctan 25.

For further properties of these reducible arctangents see MTAC v. 2, p.

62-63, 147-148, v. 4, p. 82-83, 85.
The table was produced by punched card methods. Besides its theoretical

interest the table is very useful in computing the logarithms of complex num-

bers belonging to a rectangular grid.

D. H. L.
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937[F,  G].—H.  Gupta.  "A generalization of the partition  function,"

Indian Acad. Sei., Proc, v. 17, 1951, p. 231-238.

The author denotes by vr(n, m) the number of partitions of n into parts

not exceeding m, each part k being of k^1 different types.

The generating function of vr(n, m) is

n (1 - x*)-*'"1 = ¿ vT(n, m)xn.
*-l n-0

For r = 1, vr(n, m) becomes the familiar function first tabulated by Euler.

The author gives a table of vt(n, m) for 1 < m < n < 50.

The function may be built up from the recursive relation

n

nvT(n, m) =  ¿Z trr(k, m)vr(n — k, m)
t-i

in which <rT(k, m) denotes the sum of the r-th powers of those divisors of k

which do not exceed m.
The author states that

v2(n,m) =exp{n8(C + o(l))},

where C = 27f (3)/4 so that C = 2.009.
However, 50-* In !/2(50,50) = 1.700.

D. H. L.

938[F].—A. Katz. "Third  list of factorization of  Fibonacci  numbers,"

Riveon Lemat. v. 5, 1951, p. 13.

New factors of Un or Vn are given as follows :

n                        U„ or V„ Factor

138 V 16561, 1043766587
141 U 108289
147 U 3528
147 V 65269
153 V 13159
165 U 86461
180 V 8641
189 U 38933
189 V 85429

The residual factors are in every case greater than 200000.

D. H. L.

939[F].—Ernst S. Selmer "The Diophantine equation ax3 + by3 + cz3 =

0." Acta Math., v. 85, 1951, p. 203-362.

The extensive tables at the close of this paper should be very useful in the

further study of cubic diophantine equations. The main table on page 348

fists all equations x3 + my3 + nz3 = 0 for 2 Si m < n < 50, stating in nearly

every case whether the equation is soluble or insoluble in integers, and if

soluble giving an absolutely least integral solution. A second group of tables

on pages 349-353 lists the soluble and insoluble equations ax3 -f- by3 + cz3 = 0

with abc cube-free and = 500 and a, b, c positive co-prime integers. Finally
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on page 357 there is a table listing the number of generators and the basic

solutions of the equation X* + Y* = AZ? with A cube-free and S 500.

Apparently the only previously published table is one given by Faddeev1
for this last equation extending up to A = 50.

There are in addition some useful auxiliary tables of cubic residues in

pure cubic fields K(>[m), m < 50 and the Eisenstein field K(P). In table
3 on page 351, the author has noted that the entry for w when X = 0 and

p = 17 should be w = 1 instead of w = 0.
Morgan Ward

California Institute of Technology
Pasadena, Calif.

1 D. K. Faddeev, "Ob uravnenii [on the equation] x* + y1 = Az*," Akad. Nauk
S.S.S.R., Leningrad, Fiz-mat. Inst. imeni V. A. Stekloff, Trudy, v. 5, 1934, p. 25-40.

940[H].—A. Zavrotsky. "Tablas para la resolución de las ecuaciones de

quinto grado," Acad. de Cien. Fis., Mat. Nat., Caracas, Boletín, v. 13,

1950, p. 51-93.

The author reduces the general quintic equation to the form

x* = px3 + qx2 + rx + 1.

The tables give the least positive or greatest positive root of this equation
according as p + q + r is negative or positive. The coefficients p, q, r,

range over all integers not exceeding 10 in absolute value. Values of the

roots are given to 5D. Each entry of the table was computed separately by

one of a number of iterative methods. For a table on the cubic by the same

author, see MTAC, v. 2, p. 28-30.
D. H. L.

941 [K].—W. E. Deming, Some Theory of Sampling. New York, John
Wiley & Sons, 1950. xvii + 602 p., 15.9 X 23.5 cm. $9.00.

Table 1, page 558, Fiducial Factors between s and <r, seems to be new.

The distribution of the standard deviation i in random samples of size

n from a normal population of standard deviation a is given by

(1) f(s)ds = »><»-i>2»«—>(« - l^s-V—expf - %ns2o-2}ds

Writing

(2) P. = £f(t)dt

it is evident that (2) is an incomplete T-function in which s and a occur only

in the form s/a (let s/a = t in (1)). For each value of P. and n equation (2) is

satisfied by a value of s/a which is i/fwop, in Deming's notation. Letting

ns2/ a2 = u in (1), it is evident that u is distributed as x2 with n — 1 degrees

of freedom. Thus

P. = P(x2) = .95, .50,
where

(3) X2 = ns2a~2 = n/fp2.
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Given b and P., a value of x2 is found satisfying

-p(xs) - r"/(x2)¿x2

for n — 1 degrees of freedom, and/pf is immediately given by (3). Tables of
fn and /80 are useful in finding the .05 and .50 fiducial limits of a, given s

and ». Table 1 gives values of /so and/« to 6D for n = 2(1)25.
H. A. Freeman

Massachusetts' Institute of Technology
Cambridge, Mass.

942[K].—W. J. Dixon, "Ratios involving extreme values," Annals of

Math. Stat., v. 22, 1951, p. 68-78.

Let *i, • • •, xn represent the values of a sample of size n from a normal

population arranged in increasing order of magnitude. Let

rw = (xn — xn-i)/(xn — xi), rn = (xn — xn-i)/(xn - x2),

ru = (xn - xn-i)/(xn — x3), r20 = (xn — x„r.2)/(xn — Xi),

r2\ = (xn — xn-í)/(x* — x2), rS2 = (xn — xn-2)/(xn — xi).

The six tables of this paper present the values of R which satisfy the relation

Pr(ra > R) = a,

for i = 1, 2;j = 0, 1, 2; n = 2 + i + j (1) 30; a = .005, .01, .02, .05, .10

(.10) .90, .95.
J. E. Walsh

Bureau of the Census
Washington, D. C.

943[K].—E. J. Gumbel & J. A. Greenwood, "Table of the asymptotic
distribution of the second extreme," Annals Math. Stat., v. 22, 1951, p.

121-124.

Consideration is given to the asymptotic distribution of the next to last

and of the second value of a large sample from an initial distribution of the

exponential type. Table I enables one to test (using the asymptotic distri-

bution) the hypothesis that a sample came from a completely prescribed

population by means of the second largest (penultimate) varíate. A trans-

formation is given which enables one to use the table for the second smallest

value. Probability values are given to 5D (with a method to obtain more

places if desired) with second central differences for y2 = — 1.95 (.05) 5.25,
5.35, 5.50, 5.65, 5.90, 6.45, where y2 = %n(x2 — u2)f(u2), in which n is the
sample size, f(x) = F'(x) is the initial density function, and u2 is defined by

« — 2
F(u2) =-. Probability points for y2 to 5D are given in Table II for

n
.005, .01, .025, .05, .1, .25, .5, .75, .9, .95, .975, .990, .995. Mention is made of
applying the tabular values in the construction of a probability paper, but

insufficient information is presented to enable one actually to follow the

proposal without using the references.
C. F. Kossack

Purdue University

Lafayette, Ind.
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944[K].—F. J. Massey, Jr., "The distribution of the maximum deviation

between two sample cumulative step functions," Annals Math. Stat., v.

22, 1951, p. 125-128.

Let Xi, x2, • • •, xn and yx, y2, • ■ ■ ,ym be the ordered results of two random

samples from populations having continuous cumulative distribution func-

tions F(x) and G(x), respectively. Let Sn(x) = k/n where k is the number of

observed values of X which are less than or equal to x, and similarly let

Sm'(y) = j/m where j is the number of observed values of F which are less

than or equal to y. The statistic d = max|5»(3c) — Sm'(x)\ can be used to

test the hypothesis F(x) = G(x), where the hypothesis is to be rejected if

the observed d is significantly large. The limiting distribution of d(mn/

(m + »)) ' has been derived1 and tabulated.2 In this paper the author de-

scribes a method for obtaining the exact distribution of d for small samples

and a short table for equal size samples is included. In Table 1, the probabil-

ity of d ^ k/n is given for n = m, k = 1(1)12, n = 1(1)40 usually to 6D.

L. A. Aroian
Hughes Aircraft Company

Culver City, Calif.

1 N. Smirnov, "On the estimation of the discrepancy between empirical curves of dis-
tribution for two independent samples," Moscow, Univ., Bull. Math., (série internationale),
v. 2, 1939, fase. 2, 16p.

8 N. Smirnov, "Table for estimating the goodness of fit of empirical distributions,"
Annals Math. Stat., v. 19, 1948, p. 279-281.

945[K].—F. J. Massey, Jr., "The Kolmogorov-Smirnov test for goodness

of fit," Am. Stat. Assn., /»., v. 46, 1951, p. 68-78.

Let Fo(x) be a continuous population cumulative distribution, Sn(x) the

observed cumulative step-function of a sample (i.e., Sn(x) = k/N, where k

is the number of observations less than or equal to x), then the sampling

distribution of d = maximum \F<¡(x) — Sn(x)\ is known, and is independent

of Fo(x). In Table 1, the author gives the prob{max|5v(x) — F0(x)\ >

da(N)} = a, for a = .20, .15,. 10, .05, and .01, N = 1(1)20 to 3D; and for
N = 25, 30, and 35 to 2D. For TV > 35 the limiting values of Smirnov1

apply. In Table 3 the author compares the minimum deviation of actual

from assumed population that is detectable with probability .50 by the x2

and d tests at the 5 percent and 1 percent levels of significance, with N =

200(50)1000(100)1500(500)2000, for values of x2 to 4D and values of d to
3D. (The x2 portion of this table is from Williams.2)

L. A. Aroian
Hughes Aircraft Company

Culver City, Calif.

1 N. Smirnov, "Table for estimating the goodness of fit of empirical distributions,"
Annals Math. Stat., v. 19, 1948, p. 279-281.

8 C. A. Williams Jr., "On the choice of the number and width of classes for the Chi-
square test for goodness of fit," Amer. Stat. Assn., /»., v. 45, 1950, p. 77-86.
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946[K].—H. S. Sichel, "The estimation of the parameters of a negative

binomial distribution with special reference to psychological data,"

Psyckometrika, v. 16, 1951, p. 107-127.

The negative binomial distribution is written in the form,

m r(r + p)   /   p   y/   m   V

W J{)      T(p)T(r+D\p + mJ   \p + mj '

in which optimum estimates of p and m are uncorrelated. The moment

estimate m = mean, is shown to be efficient and the moment estimate,

p = (mean)2/(variance-mean), to have efficiency given by

m Fff (*\    i 9 f l (   m   \^r(r) ro + 2) y
(2) Eñ-^=[2^-r{p-+^) T(r + p)     J   '

These results are essentially those given by Fisher.1 Figure 1 gives Eff. (p)

for p varying continuously from 0 to 3 and m = .1, .5, 1(1)4, ». It is

suggested (as also by Fisher) that Eff. (p) may be fairly accurately estimated

by using m and p in (2) above.

The maximum likelihood estimate, p, is the solution of
In / m\
- £ ÍHP + n - D - HP - D] - log {l + j) = o,

where m = m = — £ r,-. This equation is given by Haldane2 as his equation
n

(2.1). The remainder of the paper, except for three examples of applications,

is given over to tables useful in solving this equation. Table 1 gives values of

\(r,p) = ,p(p + r - 1) -t(p - 1) to 5D for r = 0(1)35 and p = .1(.1)3.0.
Table 2 gives values of \f/(p — 1) to 5D for p = .1(.1)3.0. The author seems

to be unaware of the existence of the numerous earlier tables of the digamma

function.3 Checks with the earlier tables indicate some errors in Table 1 ;

Table 2 is correct.
Leo Katz

Michigan State College
East Lansing, Mich.

1 R. A. Fisher, "The negative binomial distribution," Annals of Eugenics, v. 11, 1941,

p. 182-187.
8 J. B. S. Haldane, "The fitting of binomial distributions," Annals of Eugenics, v. 11,

1941, p. 179-181.
8 See FMR Index, p. 202-203.

947[L].—M. Abramowitz,  "Tables of the functions sin1" x dx and

(4/3) sin-4'3 <t>  |     sin1'3 x dx," N.B.S. Jn. of Research, v. 47, 1951, p.

288-290.

The first integral is given to 8D for <p = 0°(1°)90°, the second integral to

8D for 4> = 0°(30')90° and to 7D for <t> = 90°(30')i80°.
A. E.

948[L].—B. P. Bogert, "Some roots of an equation involving Bessel

functions," Jn. Math. Phys., v. 30, 1951, p. 102-105.
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Table I gives 4 to 6 S values of the first root x of

(1) Jo(x) Yxikx) - Y0(x)J1(kx) = 0

together with 4S (in one case 5S) values of

2
y = - (k — l)x

T

for k = 1,1.1,1.2,1.25,1.3,1.4,1.5,1.59334,1.6(.l) 2.1,2.45882, 3(1)10, 20.
Table II gives 4 to 5 S values of the first root of equation (1) for k «■ 1

(.01)2, 2.1, 3(1)10, 20.
Table III gives 4 S values of the first root of

(2) YiWMkx) - Ji(x) Y0(kx) = 0

for .05 ^ k ^ 1 (irregular interval, 111 values)

In addition to entries listed in MTAC, v. 1, p. 222, the author refers to
the following related tables :

Carsten & McKerrow—unpublished manuscripts, equation (1) for
k = (l.l)1'2, 1.06(.02)1.2(.5)1.5,2(1)5; 2-3D.

Rendulic, Wasserwirtschaft und Technik, no. 25-26, 1935, p. 270,
equation (1), k = 0(.1)1(1)7, 6.25; 3-4 D.

Durant, equation (2), see MTAC, v. 2, p. 172.
A. E.

949[L].—Computation Department of the Mathematical Center,
Amsterdam. Interim reports nos. R 53, Int. 1-8. The oscillating wing in a

subsonic flow. R 53, Int. 1. (1949), 7 p., 5 Datasheets. R 53, Int. 2. (1949),
21 p. R 53, Int. 3. (1950), 2 p., 9 Datasheets (reproduced on 17 p.).
R 53, Int. 4. (1950), 12 p. R 53, Int. 5. (1950), 12 p. R 53, Int. 6. (1951),
2 p., 42 Datasheets. R 53, Int. 7. (1951), 35 p. +3 p. of corrections.
R 52, Int. 8. (1951), 2 p., 18 Datasheets. 21.5 X 32.6>m.1

The Computation Department of the Amsterdam Mathematical Center

has carried out voluminous computations on behalf of the (Dutch) National

Aeronautical Research Institute. The final report will not be available for

general distribution, but a certain amount of unclassified information

regarding expansions and methods of computation of certain functions, and

a number of working sheets, are released in a series of interim reports.

Seven of the eight interim reports carry the same title; R 53, Int. 5. is

entitled "Expansions of B^ and o„ into power-series with respect to r."

The first report carries a loose sheet with a list of the 23 members of the

Computing Section of the Computation Department. The effort to make

accessible to the general computing public as much information as is consist-

ent with security, is praiseworthy and perhaps worthy of imitation.

The numerous expansions and descriptions of computations contained in

this report will prove very valuable to future workers in this field. It is

impossible to describe them concisely beyond saying that the larger part

refers to Mathieu functions, and the lesser part to certain integrals related

to Bessel functions. The work on Mathieu functions is a useful supplement

to McLachlan's book1 whose notations the authors follow.

A description of the Datasheets (mostly to 8 D or 8 S) follows.
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R 53, Int. 1. Gegevenblad 1. General orientation about parameters.

Gegevenblad 2. For r = .1(.05).35 this gives the corresponding values of

cos iji = 1 — 2r (on the worksheet sin in appears, presumably a mistake or a

survival from an earlier notation), and then sin n rn for n = 1(1)27. Data-

sheets 3, 3a. Values of J„(j82i2) for n = 0(1)26 and ß2ü from .0175 to 11.2 at
varying intervals (59 values). Spotchecking a few values against the Harvard

University tables of Bessel functions2 revealed no discrepancy. Datasheet 4

gives n~l sin n t?i for the same values of n and t\\ as in Datasheet 2. Actually,

the table is given twice : first n increases, and then « decreases, in the columns.

This is to facilitate computation of convolution sums like

m^} sin n rji sin (m — n) r¡\

n=2     n m — n

R 53, Int. 3 gives numerical values of the Fourier coefficients and charact-

eristic values of odd Mathieu functions. Mathieu's equation is written in the

form
y" + (a - 2q cos 2x) =0,    q = k2

and the function
CD

sen(x,q) = £ Bm (q) sin mx
m-l

is that solution of Mathieu's equation which has period 2tt, reduces to sin nx

when q = 0, and for which

Ê [2«? (q)J = 1.
m—l

The corresponding characteristic values of a are bn(q). Datasheets 5 to 12

(each comes in two parts) give Bl£ (q) for k = .025(.025).15(.05).3
(.075).45(.1).65, .8,1,1.2,1.5,2,3 and n = 1(1)8. The range for m varies,
m = 33 being the highest value that occurs (for « = 1 and two values of k).

Thus, quite apart from the question of different normalization, there are

values in these worksheets which are not covered by the NBSCL Mathieu

function tables.3 Datasheet 13 gives bn for the same values of k and n as in the

previous datasheets, and in addition for n = 9(1)12 for a few values of k.

Since k rather than q has been taken as a variable, some of the values do not

occur in the NBSCL tables (which tabulate bn + 2k2 as a function of 4£2)

although they all fall within the range covered there. Spotchecking a few

values of bn with the NBSCL tables did not reveal any discrepancy beyond

one unit of the last decimal place (of the Amsterdam table) which is well

within the limits of accuracy the authors claim.

R 53, Int. 6. Datasheets 14 to 55 give values of
•ii

cos (nr¡) exp (iß2 £2 cos r¡)di¡

for n = 0(1)20, r = \ — § cos jji = .1(.05).35 and for varying ranges of

values of ß2ü between 0 and 4.8. Real and imaginary parts are given on

separate sheets.
R 53, Int. 8. Datasheets 60 to 71 gives values of

f

f'MO^cfdt.f'YM^ad,
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fore = .3(.1).8 andx = 0(.1)6.1. The report states that in the heading of the

X
tables - should be replaced by ex. These tables exceed both in their range and,

c
partly, in the number of decimals the tables by Schwarz4 who introduced

these functions. Datasheets 72-77 give the real and imaginary parts (both

parts on the same sheet) of

(c + cosh £)-1 exp (— ix cosh £)d£

for c = .3(.1).8 and x = 0(.1)6.1.
A. E.

1 N. W. McLachlan, Theory and Application of Mathieu Functions. Oxford University
Press, 1947.

8 Harvard University Computation Laboratory, Annals v. 3-14, Tables of the
Bessel Functions of the First Kind of Orders Zero through Hundred Thirty-Five. Harvard
University Press, 1947-1951.

8 NBSCL, Tables Relating to Mathieu Functions, New York, Columbia University Press,
1951.

«See MTAC, v. 1, 1944, p. 248, 250, 304.

9S0[L].—Wolfgang Gröbner & Nikolaus Hofreiter, Integraltafel.
Zweiter Teil: Bestimmte Integrale. Vienna and Innsbruck, Springer-

Verlag, 1950, vi, 204 p. 20.7 X 29.8 cm.

The first volume of this work contains indefinite integrals, and it was

reviewed in MTAC, v. 3, 1949, p. 482. The present second volume lists

principally those definite integrals which cannot be evaluated in a simple

manner from the indefinite integrals of the first volume. In addition, many

integrals which could be computed from the first volume have been included

for the convenience of the user. For instance, the indefinite integral

I x2m(x2 + a2)~n-Ux,    n > m>0

is given in volume I as a (finite) series. If the limits 0 and » are substituted

in that series, one obtains a sum containing binomial coefficients. In volume

II the integral (from 0 to °°) is given in closed form, thus saving the user the

labor of summing the series.

Known definite integrals are very numerous, and in order to prevent the

book from becoming unwieldly the authors limited themselves to a selection.

By introducing variable parameters they often give master formulas from

which many integrals can be computed, and do not list too many of the

particular cases. All integrals recorded in the table have been carefully

checked, and to make assurance doubly sure, each entry is accompanied by a

coded instruction telling the user how to verify the result if he wishes to do

so.
The general arrangement of the second volume closely resembles that of

the first volume, except that there are five sections in volume II instead of the

three sections of volume I.

The Introduction contains a list of symbols and notations, a list of

references, methods for the evaluation of definite integrals, and general

formulas. In the list of references Dirichlet's lectures on definite integrals,

Bierens de Haan's tables of integrals, Magnus & Oberhettinger's book

L



28 RECENT MATHEMATICAL TABLES

on special functions, Watson's Bessel Functions, and Whittaker &

Watson's Modern Analysis are mentioned, but not the volume of corrections

by Lindman to Bierens de Haan's tables, nor the integral tables by Ryzhik

(MTAC, v. 1, 1945, p. 442^43).
Section 1, Rational integrands (21 p.) contains also formulas for, and

integrals involving, the classical orthogonal polynomials. Section 2, Algebraic

integrands (20 p.) contains also elliptic integrals both in Legendre's normal

form and in Weierstrass' canonical form. Section 3, Elementary transcen-

dental integrands (117 p.) contains many integrals which can be evaluated

in terms of error functions, Bessel functions, and other higher transcendental

functions. There are also special subsections devoted to Euler's dilogarithm

and to the exponential integral and related functions. In this section there is

a table of Laplace transforms (with a reference to Doetsch's book of 1937,

but without reference to any of the more recent and more extensive tables of

Laplace integrals). No table of Fourier transforms is given, but many

Fourier integrals occur in various subsections of section 3. The last subsection

in this section lists information on limits of definite integrals: Dirichlet's

singular integral, the integral occurring in the Riemann-Lebesgue lemma,

and Laplace transforms.

The last two sections contain material which has no counterpart in the

first volume. Section 4 Euler integrals (18 p.) contains some hypergeometric

integrals in addition to integrals which can be evaluated in terms of the

gamma function and related functions. Section 5, Bessel functions (20 p.)

contains both integrals which can be evaluated in terms of Bessel functions

and integrals whose integrands contain Bessel functions.

The book is an offset print from an excellent handwritten copy. In

comparison with the first volume, one finds larger letters and explanations

written in italic rather than script characters, both features contributing to

legibility.
A. E.

951[L].—Y. L. Luke & M. A. Dengler, "Tables of the Theodorsen

circulation function for generalized motion," Jn. Aeron. Sei., v. 18, 1951,

p. 478-483.

The function in question is

i2i(2)(z)

CW = H^(z) + iH^(z) ' F{P' 6) + iG{(" 6)'

where z = peiS, and Hnm is the Hankel function. Tables 1 and 2 give 7D

values of F and of - G for 0 = - 5°(5°)30° and p = 0(.01).3(.02).5(.05)
1 (.5)4(1) 10. Table 3 gives 7D values of Fand of - G for 0 = 0 and p = k =
0(.002).1(.01).3(.02).34(.01).36(.02).44(.01).46(.02).54(.01).56(.02).64(.01)
.66(.02).74(.01).76(.02).84(.01).86(.02).94(.01).96(.02)1(.1)2(.5)10(10)50,100,
oo. All tables were computed from standard American and British tables of

Bessel functions, and the error is estimated by the authors to be at most 3

units of the seventh decimal.

A. E.
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952[L].—NBSCL, Tables Relating to Mathieu Functions. Columbia Univer-
sity Press, New York, 1951. xlvii + 278 p. 19.7 X 26.7 cm. Price $8.00.

These tables now make it possible to calculate radiation and scattering

from slits, strips and elliptic cylinders with nearly the same facility as has

been previously possible for rods and spheres.

Solutions of the Helmholtz equation V2\f/ + k2\f/ = 0 may be required in

solving the wave equation, the diffusion equation, and, in the limiting case

of zero potential, the Schroedinger equation. Factored solutions are possible

for the eleven coordinate systems for which the equation separates. For most

of these systems one or two of the coordinates are "angle" coordinates, with

a finite range of values; the rest are "radial" coordinates, with a range from

0 to <» or from — » to ». To solve most problems of physical interest one

needs tables of the eigenfunction solutions for the angle coordinates, with

corresponding eigenvalues for the separation constant; one also needs both

independent solutions for the radial coordinates, for the eigenvalues of the

separation constant.

Heretofore adequate tables have been available for only three coordinate

systems : rectangular, for which the solutions are trigonometric and hyper-

bolic functions; circular cylindrical for which the Bessel and Neumann

functions are needed;1 and the spherical, for which tables of spherical har-

monics are also required.2 Other systems of practical interest are the elliptic

cylinder coordinates, with solutions tabulated in the tables here reviewed,

the parabolic cylinder, the parabolic and the spheroidal coordinates, for

which adequate tables are still lacking.

Factors for elliptic cylinder coordinates are solutions of the separated

equation
y" + (b + s cos2 x) y = 0,

where the "angle" coordinate corresponds to real values of x from 0 to 2ir

and the "radial" coordinate to imaginary values, from 0 to too. The tables

under review provide the foundation for radiation and scattering calculations

for 5 (which is proportional to the square of the ratio between the interfocal

distance to the wave-length) from 0 to 100, with enough entries to allow

reasonably accurate second-difference interpolation.

Eigenvalues of the separation constant b are given for.the first 31 periodic

eigenfunctions for the angle coordinate, to 8 decimal places. Corresponding

values of the coefficients of the Fourier series expansions of these eigenfunc-

tions are given to allow a 9D accuracy of the resulting Fourier series. These

eigenfunctions alternate in symmetry, of course ; the first being even about

x = 0, the next being odd and so on. The series coefficients are normalized so

that the value of the even functions, Sem, are unity and the slopes of the odd

functions, Som, are unity at x = 0. This normalization has some advantage

in radiation calculations, though the alternative normalization, that the

quadratic integral over x from 0 to 2ir be 2ir, is preferred by some. In the

former case the values of the solution for x near v/2, for 5 large, may be

quite large ; in the second case the corresponding values for x near 0 may be

vanishingly small. Since the ratio between the coefficients for the two normal-

izations is tabulated, either one may be computed.

In the case of the radial functions the preference is more clear-cut. Most
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radiation or scattering problems involve the asymptotic amplitudes of the

two independent solutions. Because of the simple relationship between the

Fourier series for the eigenfunction and the Bessel-function series for the

radial solutions, the former normalization (value or slope unity) results in a

simple asymptotic form for the solutions, the latter (integral of the square =

27r) does not. From the coefficients, as tabulated, these simpler forms of the

two radial solutions may be computed as functions of — ix by using tables

of Bessel and Neumann functions. Values and slopes of the two radial func-

tions at a; = 0 are given to 8 significant figures in the volume, thus allowing

computation of radiation and scattering from degenerate elliptic cylinders

(strip or slit) to be carried out without the use of additional Bessel-function

tables. Again interpolation is made easy by the type of presentation.

For those with easy access to large computing machines the Tables in this

volume will probably allow easy calculation of most radiation or scattering

or resonance problems of practical interest. For those having only desk

equipment available it would save much labor to have subsidiary tables of

the actual angle and radial functions published, though these additional

tables would be quite bulky because of the large number of entries required

(different values of s, of m and of x all requiring tabulation).

The Mathematical Tables Project is again to be congratulated in carrying

out, in so satisfactory a manner, the immense amount of labor required to

obtain the entries in this volume. One can hope that the spheriodal functions

will eventually be tabulated with similar accuracy and extensiveness.

Philip M. Morse
Mass. Inst. of Tech.

Cambridge, Mass.

1 See, for example: Scattering and Radiation from Circular Cylinders and Spheres; Tables
of Amplitudes and Phase Angles {MTAC, v. 3, p. 107]. For other tables of Bessel Functions
see MTAC, v. 1, p. 205-308. The new tables of Bessel Functions \_MTAC, v. 5, p. 223-224]
published by the Harvard Computation Laboratory will be most useful as soon as the corre-
sponding second solutions are published.

8 See, for example: H. Tallqvist, "Tafel der 24 ersten Kugelfunktionen P„(cos 0)
{MTAC, v. 1, p. 4J, and also MTP, Tables of the Associated Legendre Functions {MTAC,
v. 1, p. 164-165] and Tables of Spherical Bessel Functions {MTAC, v. 3, p. 26].

953[L].—Martha Petschacher, "Tabelle di Funzioni Ipergeometriche,"

Rome, Univ., 1st. Naz., Alta Mat., Rend. Mat. e Appl., s. 5, v. 9, 1951,

p. 389-120.

For the calculation by the hodograph method of steady motions of a gas

in two dimensions, two families of hypergeometric functions are of import-

ance. The first, which is relevant for finding the Legendre potential and

position co-ordinates of the gas-flow, is

(1) F(t) = F(a„ß„ M+l;r),

where F is the hypergeometric series and t is the variable, p a parameter, and

a„, ßß are determined from

(2) a„ + ß„ = p + 1/(7 - 1),    aßß, =  - \p(ß - \)/(y - 1),

7 being the adiabatic index of the gas. The second, which is relevant for

finding the stream function, is

(3) F(a„,b„; p + 1 ; r),
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where

ö„ + bß = p - 1/(7 - 1),    a„öM = - %n(n + i)/(y - 1).

For physical significance the range of t is 0 < r, < 1.

In the present publication the function F(t) defined by (1), (2) is tabu-

lated for the case y = 1.4, for r = 0(.02)1 and p = \(\)\; f(J)2(|)7(l)10,
to 6D throughout. A user of these tables is, however, more likely to be in-

terested in significant figures than decimals ; the number of significant figures

is 6 or 7 for the smaller values of p, diminishing to 4 (or, for a small part of

the table, 3) for the higher p. The related function

F(r) = T*'2F(a„ ßß; p + 1 ; r)/r(l + p)

also is given ; the number of significant figures is in general the same as for

F(t).
The calculation was made (a) for 0 < r < 0.7 by numerical solution of

the hypergeometric differential equation, (b) for 0.7 < r < 1 by expressing

(1) in terms of hypergeometric functions of 1 — r and finding these from

their power series ; the agreement at r = 0.7 provided an over-all check. The

table is stated to be correct to about half a unit in the last figure, and the

reviewer has verified this for a few entries.

The function (3), and its derivatives, have been tabulated by Ferguson

& Lighthill1 and by Vera Huckel,2 and from these the function (1) can be

easily found. But the present table breaks new ground in covering the range

§ < r < 1 and including values of p which are neither integral nor half-

integral. However, for the gas-flow context one requires also the derivative

of F(t), and it is to be hoped that the author will extract this from her work

sheets and publish it.
T. M. Cherry

University of Melbourne

Melbourne, Australia

1 D. F. Ferguson & M. J. Lighthill, "The hodograph transformation in transonic
flow," Roy. Soc. London, Proc, v. 192A, 1947, p. 135-142.

8 V. Huckel, Tables of Hypergeometric Functions for Use in Compressible-Flow Theory.
N. A. C. A. Technical Note no. 1716, Washington, 1948.

954[L].—G. Pólya & G. Szegö. Isoperimetric inequalities in mathematical

physics. Annals of Mathematics Studies no. 27. Princeton University

Press, 1951. xvi + 279 p. 17.7 X 25.3 cm. Price $3.00.

The tables (p. 247-274) give values for the following ten quantities

associated with a plane domain D :

L length of perimeter.
A area.
I moment of inertia of the area with respect to its centroid.

B. Let a be any point of D, and h the distance, from a, of the tangent at

any point of the boundary of D. B is the minimum, as a varies over D, of the

integral S h~lds taken over the boundary of D.

p and R radii of the inscribed and circumscribed circles of D.

f and f maximum inner radius, and outer radius, i.e., the radii of the

circles (in the case of the interior, maximal circle) which bound a conformai
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map of D, or its complement, if the linear magnification at the centre (for D)

or at infinity (for the complement of D) is unity.

P torsional rigidity of a cylinder of cross-section D.

A principal frequency of a membrane of shape D.

The first 13 tables (p. 251-258) list the values of these constants for the

following domains: circle, ellipse, square, rectangle, semi-circle, sector, 3

triangular shapes (equilateral, half of an equilateral, isosceles right-angled

triangles), and regular hexagon, together with approximations for narrow

ellipses, rectangles, and sectors. Not all tables list all the values. The follow-

ing 14 tables (p. 259-271) list certain dimensionless combinations (for

instance rA~w, PA.2A~X) for some or all of the same domains, together, in

some cases, with information about the boundedness or extreme values of

the combinations in question. The last two tables (p. 272, 273) list values of

B, r, f for some additional domains.

In the main body of the monograph there are some further numerical

values, inequalities, and approximations for these and similar quantities, and

some corresponding quantities for three-dimensional domains. There is also

(on page 22) a 4D numerical table of

(1 + sin2¿)> jT[(t - g)/(2x)]

cos (6/2) 21r'r[(27T - «)/(2r)]

for 5° = 0(15)60(5)85(1)90. Here./ = 2.4048 ... is the first positive zero of
the Bessel function J0(x). This table is reprinted from a paper by one of the

authors.1
A. E.

1 G. Pólya, "Torsional rigidity, principal frequency, electrostatic capacity and sym-
metrization," Quart. Appl. Math., v. 6, 1948, p. 267-277.

955 [L].—G. W. Reitwiesner. A Table of the Factorial Numbers and their

Reciprocals from 1 ! through 1000 ! to 20 Significant Digits. Ballistic Research

Laboratories, Technical Note no. 381. Aberdeen Proying Ground, Md.,

1951. Hectographed 20.3 X 26.7 cm.

This table, whose description is quite adequately given in its title is a

by-product of the computation of e by the ENIAC {MTAC, v. 4, p. 11-15].
A similar table to 62S is on file in the Computing Laboratory of the BRL

{MTAC, v. 5, p. 195]. This table is an extension of a previous table, Tech-

nical Note no. 106, by Lotkin {MTAC, v. 4, p. 15] extending to 200! with
20S. A table of n\ for n = 1(1)1000 to 16S is described in RMT 956 and
UMT 69 {MTAC, v. 3, p. 205]. A manuscript table, identical with the one
under review, by S. Johnson, is mentioned in MTAC, v. 3, p. 340.

956[L].—Lelia Ricci, "Tavola di radici di basso modulo di un'equazione

interessante la scienza delle costruzioni," Rivista di Ingegneria, 1951,

no. 2, 8 p.

Numerical tables of the first ten pairs of roots (in case of complex roots,

of real and imaginary parts of the roots) of

sin z = ± kz
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for k = .1(.01)1. Five decimals (claimed reliable) are given for k — .1(.1)1,

four decimals (of which the last is not reliable) for the other values of k.

Table I gives the complex roots, and Table II the real roots. {See also

MTAC, v. 5, p. 231.]
A. E.

957[X].—H. E. Salzer. Tables of n\ and T(n + f) for the First Thousand
Values of n. National Bureau of Standards, AMS 16. Washington 1951.
Price 15 cents.

This table brings to publication a manuscript table of n\ already reported

in MTAC, v. 3, p. 205. The values of n\ and T(n + ¿) for « = 0(1)1000 are
given to 16S and 8S, respectively. The manuscript table of w! was checked by

comparison with a 24S table prepared by J. Blum on punched card equip-

ment.
D. H. L.

958[V].—Ballistic Research Laboratories, Report no. 757: M. Lotkin,
Supersonic Flow of Air Around Corners, May 1951, 20 p., 1 table,

1 diagram.

If p be the Mach angle and the function: /(p) = /fe_1cot_1[Jfe_1 tan p] be
introduced, where k2 — (y — l)/(y + 1) and 7 is the specific heat ratio, then

the relation between the deflection, 5, of a supersonic stream and the initial

and final Mach angles, p¿ and p/, may be expressed :

5 = /(p/) — f(m) + M/ — M<-

Also, the radial and tangential velocity components are:

u = csin {kf(n)1
v = c k cos [£/(p)],

where c is the velocity of efflux into a vacuum. The temperature, density,

and pressure follow directly from the fact that T is proportional to

and the adiabatic law.
Since 5 occurs as the first difference of F(p) = /(p) + p, the expansion

around a corner 5 may be regarded as the continuation of an expansion from

M = 1 and Ô tabulated as a function of p from M = l(p = 90°, 5 = 0) to

M->oo f p = 0, 5 = | {k~l -I])- The author tabulates 0 =/(p), p, M,

q/c (where q is the speed), T/T0, p/Po, and p/po (where the subscript 0 refers

to stagnation conditions) for 0°.5 interval of the argument S. The value

7 = 1.405 is used, angles are given to 0°.001, and the thermodynamic vari-

ables are carried to five significant figures.

The author presents an unnecessarily involved form of the above synopsis

of the problem, presumably motivating the highly misleading form of the

only diagram in the paper which, by its contextual implication, illustrates
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the physical picture of the general flow around a corner but actually applies

only to the case M = 1.
Richard N. Thomas

Univ. of Utah
Salt Lake City, Utah

959[V].—I. Imai & H. Hasimoto, "Application of the W. K. B. method to
the flow of a compressible fluid, II," Jn. Math. Phys., v. 28, 1950, p. 205-
214.

Table 1 (p. 21) gives 4 or 5S values of Q and of Q/qK* for q = 0(.01)1,
where

K= (Í- q2) (1 - ay)-1"1,    a2 = l£j,    y = 1.4,

-(rfá)'. <?-7^(H?)>-'w,"'~•
There are also some tables relating to the physical problem in hand.

A. E.

960[Z].—Paul S. Dwyer, Linear Computations. London, Chapman and

Hall, New York, John Wiley and Sons, 1951, xii + 344 p. 229 X 14.4
cm. $6.50.

The main purpose of the book is to explain how to get numerical solutions

for sets of simultaneous linear equations. Related matters, such as the

numerical evaluation of determinants, numerical inversion of matrices, etc.,

are also treated, but with less detail. Attention is centered on the use of desk

calculators.

Quite literally, the reader needs only to know grade school arithmetic and

some high school algebra to read the first half of the book. The first three

chapters discuss elementary computational matters, such as round off errors,

significant digits, etc. Then there are five chapters which deal with a great

many variations of the basic scheme of solving simultaneous linear equations

by successive elimination of variables. Next come two chapters on determi-

nants. The basic theorems are stated without proof, and the main attention is

devoted to methods of numerical computation. A chapter on linear forms and

three chapters on matrices follow, with the same pattern. Except for a

thorough chapter on the errors that can arise in the above methods, the few

remaining chapters seem very sketchy. For example, two related methods

are given for finding the characteristic equation of a matrix, but no mention

is made of well-known methods for finding the greatest eigenvalue directly.

Indeed, the author seems distrustful of all iterative methods, since he dis-

misses even the best known and most widely used iterative methods with a

bare mention.

The author is very liberal with diagrams and numerical illustrations.

The explanations are full and painstaking. The book will be a great help to

those with little mathematical maturity who must nonetheless personally get

numerical solutions of simultaneous linear equations.

J. Barkley Rosser
Cornell University

Ithaca, New York


