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up with A7! as a free parameter which can be typed into the machine as

occasion demands, no further information being needed. This elaboration

of the program makes it possible to operate a lengthy sieve problem as a

backlog workload without the need of a specially trained operator.

D. H. L.

1D. H. Lehmer, "The mechanical combination of linear forms," Amer. Math.
Monthly, v. 35, 1928, p. 114-121, "A photo-electric number sieve," Amer. Math. Monthly,
v. 40, 1933, p. 401-406, "A machine for combining sets of linear congruences," Math.
Annalen, v. 109, 1934, p. 661-667.

* L. E. Dickson, History of the Theory of Numbers, v. 2, Washington, 1923; New York,
1934, p. 57.

The Use of Large Intervals in Finite-
Difference Equations

In a recent article Sir Richard Southwell1 has challenged the general

theory of finite differences and in particular the use of it in connection with

the solution of differential equations by relaxation methods.2 Opinions differ

on the method of treatment of a numerical differentiation formula such as

where h is the interval between pivotal points and where S2ny0 is the 2«th

central difference of y0. This equation is replaced for the purpose of numerical

solution by its equivalent

h2yo" = (yi + y-i - 2yo) + A (y0),

where yu y0, and y_i refer to the values of y at x0 + h, x0, and x0 — h

respectively and

I advocate the use of as large an interval as possible (consistent with con-

vergence of the finite-difference equations and convenience of computation)

calculating A(y) and incorporating it into the computation. Southwell

prefers to use such a small interval that A is negligible. He states : "Accuracy

is not predictable from quantities computed from a finite-difference approxi-

mation unless the interval is small enough to justify belief in the convergence of

the Taylor series: in general the radius of convergence, though it exceeds one

or two of the smallest intervals that are practicable, will not exceed many

such intervals, and consequently what have been claimed as closer approxi-

mations may in fact be less accurate."

The purpose of this note is to point out that, in the writer's opinion, this

statement is unduly cautious and that its conclusion cannot be true if finite-

difference equations are properly used.

In the first place it is not clear what role the Taylor series plays in finite-

difference theory. If the Taylor series is not convergent, care must certainly

be exercised ; but finite-difference methods do not always break down in this

case.3 The point to be emphasized, however, is that an examination of the

differences will tell us, in all practical cases, whether the finite-difference
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equations we wish to use are valid and how many differences are significant

at the particular interval used. It is stressed by Fox2 that in all the finite-

difference formulae used the differences must be convergent and that other-

wise a smaller interval must be used.

By "convergence of differences" I mean that the differences of some order

should oscillate about zero, with a maximum amplitude determined in the

usual way by the binomial coefficients of that order.4 The tabulated function

can then be regarded as a polynomial, slightly perturbed by rounding errors

of not more than half a unit at any point. The degree of the polynomial is the

same as the order of the last significant difference, and the function can be

interpolated, integrated, and differentiated by finite-difference formulae

based on this polynomial representation, the error of the process being of the

order of the first neglected term in the finite-difference equation.

The degree of the approximating polynomial varies with the number of

figures to which the given tabular entries are rounded off and with the magni-

tude of the interval between successive pivotal points. The function

(1 + x2)-1, for example, can be represented near the origin, at an interval of

.1, by a quadratic to two decimals, a sextic to four, and so on. In each case

interpolation and integration can be performed effectively to the same pre-

cision as that of the tabular entries, though derivatives suffer from the loss

of significant figures in successive differences. In particular no estimate can

be given for derivatives of the true function of orders greater than the

degree of the approximating polynomial.

The fact that the true higher derivatives may be large and ever increasing

as for example in the function (1 -+- x2)-1, is of no significance with regard to

the use of finite-difference formulae as applied to the approximating poly-

nomial. If the derivatives increase fast enough such formulae may be asymp-

totic, but again the error is of the order of the first term neglected. This is

analogous to the treatment, in a recent paper by Fox & Miller3 , of a func-

tion whose Taylor series had zero radius of convergence at the origin ; the

series was in fact asymptotic.

Southwell does not use differences and bases his argument on the fact

that increased accuracy is not guaranteed by increasing the order of the

approximating polynomial, citing as one example the interpolation at unit

interval of the function (1 -j- x2)-1. The first table gives the differences of this

function, tabulated to three decimals at unit interval (the central differences

at x = 0 are filled in from consideration of symmetry). Examination shows

that the differences are diverging rapidly, that interpolation formulae can

hardly give even one-figure accuracy in the function near x = 0, and that a

much smaller interval is necessary.

x     10»y x      10sy

0 1000        -1000 2400  12  6897 285
-500 1200 -1015      -76

1 500 200        -1200  13  5882 209       22
-300 0 -806      -54

2 200 200 -141  14  5076 155       16
-100 -141 -651      -38

3 100 59 15  4425        117       12
-41 -534      -26

4 59 16  3891 91
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The divergence of differences near x = 0, however, does not prevent the

accurate use of finite-difference formulae at points sufficiently remote from

this point. Central-difference formulae, for example, are based on polyno-

mials whose origin is at the particular pivotal point considered, and the func-

tion (1 + x2)-1 can be quite correctly interpolated, differentiated, or inte-

grated to at least four figures, at unit interval, in the range shown in the

second of the tables.

Turning now to the rest of the quotation, the second part suggests that

the largest interval at which the full finite-difference equation can give

accuracy will never greatly exceed an interval for which its first term alone is

adequate. This will depend, of course, on the particular function involved, but,

even if the ratio of intervals is only two, the use of A is worth-while not

only for economy of effort but also from the point of view of accuracy.

Computers know that the use of small intervals in step-by-step integra-

tion is dangerous, the tendency for rounding-off errors to accumulate being

roughly proportional to the square root of the number of intervals used. In

relaxation methods, similarly, a small interval involves a large number of

simultaneous equations, and their accurate solution is a matter of consider-

able difficulty ; often one or even two extra figures have to be retained in the

coefficients and residuals. Practical views on this have been reinforced by a

recent theoretical paper by Todd.6

In illustration of these points let us try to evaluate to four decimals the

pathological function (1 + x2)-1 from the facts that it satisfies the differential

equation

y" + 4x (1 + x2)-1 y' + 2 (1 4- x2)"1 y = 0,

is symmetric about x = 0, and has the value y (J) = .8000. The finite-

difference equation is given by

yi (1 4- 2xo/o) + y_i (1 - 2xo/o) - yo (2 - 2hf0) + A(y0) = 0,

where

A(y) - -4x/(Í/ío3-¿mS6+ •••)3'+(-¿54 + ¿56-)y

and

/ - h (1 + x2)-1.

At an interval h = .25 there are only five pivotal points, giving insuffi-

cient information about the differences. The next smallest convenient inter-

val is .1 (assuming we wish to have x = 0 as a pivotal point), and at this

interval we find the following first approximation y(0), with A neglected.

Extra figures have been retained in the residuals and coefficients to ensure

that this approximation is everywhere an accurate solution (to four figures)
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to the given simultaneous equations. The evaluation is as follows :

Error in
x    ioyo) A r       toyo   ioy°>

.0       10020 -200 22 -1.8        -1.4       10001       20
-100 11

.1 9920 -189 21 -1.9        -2.1 9902       19
-289 32

.2 9631 -157 12 -1.5        -1.5 9616       16
-446 44

.3 9185 -113 2 -1.0        - .8 9175        11
-559 46

.4 8626 -67 (-9)        - .2        -  .2 8621 5
-626 (37)

.5 8000 8000 0

The differences look quite satisfactory, fifth and higher orders being

apparently negligible, and the recorded values of A include contributions

from third and fourth differences only. If these values are now inserted in

the finite-difference equations, the remaining residuals are as shown in the

column headed R, and their liquidation gives a better approximation y(1),

whose maximum error is one unit. The skilled computer would notice further

that the fifth and sixth differences, though small, have a definite flow and

are not yet oscillating about zero. Their total contribution is only about — .2,

but their effect is to reduce the maximum error in y(1) to half a unit in the

last figure.

This work involved the solution of nine simultaneous equations with

two sets of residuals and with a little intermediate computation. If A were

ignored and the computer solved 19 linear equations at an interval of .05, he

would still have maximum errors of five units.

It is very doubtful whether intuition alone could here decide the question

of the size of the "ultimate interval" for which A is negligible, and, if the

computer, still ignoring A, wished to make sure of his result by taking an

interval of .025, he would still have errors of one unit, having solved no less

than 39 linear equations in addition to computing the coefficients thereof.

The labour of this process is excessive; the accurate solution of these 39

equations would involve keeping at least two extra figures in the coefficients

and residuals.

I therefore maintain, with regard to the end of the statement, that a

computer familiar with both the theory and practice of finite differences will

never be in danger of claiming more accuracy than he has achieved. Either

he has got the desired accuracy, or he will know that he has not got it (and

perhaps cannot get it, as for example near a discontinuity or singular point).

No question of prior knowledge of the convergence of the Taylor series

arises, and such knowledge has certainly not been sought in any of my

published examples. Examination of the differences, after a tentative solution

has been found, provides the necessary information and is of course essential.
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In this paper I have concentrated on functions of one variable, but the

remarks apply with greater force to partial differential equations, particu-

larly in the desirability, both for the sake of accuracy and a minimum of

labour, of using conveniently large intervals.
L. Fox

National Physical Laboratory

Teddington, England

and NBSCL

1 Numerical Methods of Analysis in Engineering. Edited by L. E. Grinter, Macmillan
Company, New York, 1949, chapter 4.

* L. Fox, "Some improvements in the use of relaxation methods for the solution of
ordinary and partial differential equations," Royal Soc, London, Proc, v. 190A, 1947,
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* L. Fox & J. C. P. Miller, "Table-making for large arguments. The exponential inte-

gral," MTAC, v. 4, 1951, p. 163-167.
4 See, for example, J. C. P. Miller, "Checking by differences—I," MTAC, v. 4, 1950,

p. 3-11.
5 J. Todd, "The conditions of a certain matrix," Cambridge Phil. Soc, Proc, v. 46,

1950, p. 116-118.

Monte Carlo Matrix Inversion and

Recurrent Events

1. Introduction. Recently Wasow1 has given a necessary and sufficient

condition that one of two unbiased estimators of the inverse element of a

given matrix has a smaller variance. Using the theory of recurrent events,

we extend a result by Feller2 in order to generalize and reinterpret Wasow's

condition. To do this let us consider a simple discrete Markov process with

a finite number of states. Of these m + 1 states denoted by 0, 1, 2, ■ • ■, m, we

prescribe that the state named "0" is the only death state or sink—in the

sense that the random walk ends when this state is reached. Let pik be the

one-step transition probabilities for i, k = 1, • • •, m, and let

m

Pío = 1 — E Pik.   for   i = 1, • ■ •, m.

Further, we assume that each pi0 > 0. When » > 0 define pf¿ as the proba-

bility that in a random walk starting at state i, state k is visited on the

«-th step; and define £« = 5;*, where 5,* is the Kronecker delta.

Now if (ça) = (8ik — pik) is the m by m matrix whose inverse (qik) is

desired, we may estimate each element qik by Monte Carlo methods as in

Wasow2, Forsythe & Leibler3, and Curtiss4, since

qik =  £ PTI
n-0

Two estimators have been investigated. The first estimator is the sample

mean of the random variable sik where sik = pío1 if the random walk having

started at state i stops just after visiting state k, and Sik = 0 if otherwise.

The second estimator is the sample mean of the random variable »,•* where

Vik is the number of visits to state k in a random walk having started at


